Step |
Hyp |
Ref |
Expression |
1 |
|
dfsclnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfsclnbgr2.s |
⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } |
3 |
|
dfsclnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
1 2 3
|
sclnbgrel |
⊢ ( 𝑁 ∈ 𝑆 ↔ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑁 } ⊆ 𝑒 ) ) |
5 |
|
dfsn2 |
⊢ { 𝑁 } = { 𝑁 , 𝑁 } |
6 |
5
|
eqcomi |
⊢ { 𝑁 , 𝑁 } = { 𝑁 } |
7 |
6
|
sseq1i |
⊢ ( { 𝑁 , 𝑁 } ⊆ 𝑒 ↔ { 𝑁 } ⊆ 𝑒 ) |
8 |
|
snssg |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∈ 𝑒 ↔ { 𝑁 } ⊆ 𝑒 ) ) |
9 |
7 8
|
bitr4id |
⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 , 𝑁 } ⊆ 𝑒 ↔ 𝑁 ∈ 𝑒 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑁 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 𝑁 ∈ 𝑒 ) ) |
11 |
10
|
pm5.32i |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑁 } ⊆ 𝑒 ) ↔ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 𝑁 ∈ 𝑒 ) ) |
12 |
4 11
|
bitri |
⊢ ( 𝑁 ∈ 𝑆 ↔ ( 𝑁 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 𝑁 ∈ 𝑒 ) ) |