Metamath Proof Explorer


Theorem sclnbgrelself

Description: A vertex N is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion sclnbgrelself ( 𝑁𝑆 ↔ ( 𝑁𝑉 ∧ ∃ 𝑒𝐸 𝑁𝑒 ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
3 dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
4 1 2 3 sclnbgrel ( 𝑁𝑆 ↔ ( 𝑁𝑉 ∧ ∃ 𝑒𝐸 { 𝑁 , 𝑁 } ⊆ 𝑒 ) )
5 dfsn2 { 𝑁 } = { 𝑁 , 𝑁 }
6 5 eqcomi { 𝑁 , 𝑁 } = { 𝑁 }
7 6 sseq1i ( { 𝑁 , 𝑁 } ⊆ 𝑒 ↔ { 𝑁 } ⊆ 𝑒 )
8 snssg ( 𝑁𝑉 → ( 𝑁𝑒 ↔ { 𝑁 } ⊆ 𝑒 ) )
9 7 8 bitr4id ( 𝑁𝑉 → ( { 𝑁 , 𝑁 } ⊆ 𝑒𝑁𝑒 ) )
10 9 rexbidv ( 𝑁𝑉 → ( ∃ 𝑒𝐸 { 𝑁 , 𝑁 } ⊆ 𝑒 ↔ ∃ 𝑒𝐸 𝑁𝑒 ) )
11 10 pm5.32i ( ( 𝑁𝑉 ∧ ∃ 𝑒𝐸 { 𝑁 , 𝑁 } ⊆ 𝑒 ) ↔ ( 𝑁𝑉 ∧ ∃ 𝑒𝐸 𝑁𝑒 ) )
12 4 11 bitri ( 𝑁𝑆 ↔ ( 𝑁𝑉 ∧ ∃ 𝑒𝐸 𝑁𝑒 ) )