| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsclnbgr2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | dfsclnbgr2.s | ⊢ 𝑆  =  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } | 
						
							| 3 |  | dfsclnbgr2.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | sclnbgrel | ⊢ ( 𝑁  ∈  𝑆  ↔  ( 𝑁  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑁 }  ⊆  𝑒 ) ) | 
						
							| 5 |  | dfsn2 | ⊢ { 𝑁 }  =  { 𝑁 ,  𝑁 } | 
						
							| 6 | 5 | eqcomi | ⊢ { 𝑁 ,  𝑁 }  =  { 𝑁 } | 
						
							| 7 | 6 | sseq1i | ⊢ ( { 𝑁 ,  𝑁 }  ⊆  𝑒  ↔  { 𝑁 }  ⊆  𝑒 ) | 
						
							| 8 |  | snssg | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑁  ∈  𝑒  ↔  { 𝑁 }  ⊆  𝑒 ) ) | 
						
							| 9 | 7 8 | bitr4id | ⊢ ( 𝑁  ∈  𝑉  →  ( { 𝑁 ,  𝑁 }  ⊆  𝑒  ↔  𝑁  ∈  𝑒 ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑁  ∈  𝑉  →  ( ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑁 }  ⊆  𝑒  ↔  ∃ 𝑒  ∈  𝐸 𝑁  ∈  𝑒 ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑁 }  ⊆  𝑒 )  ↔  ( 𝑁  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 𝑁  ∈  𝑒 ) ) | 
						
							| 12 | 4 11 | bitri | ⊢ ( 𝑁  ∈  𝑆  ↔  ( 𝑁  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 𝑁  ∈  𝑒 ) ) |