Description: Every member X of the semiclosed neighborhood of a vertex N is a vertex. (Contributed by AV, 16-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfsclnbgr2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
dfsclnbgr2.s | ⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } | ||
dfsclnbgr2.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
Assertion | sclnbgrisvtx | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsclnbgr2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | dfsclnbgr2.s | ⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } | |
3 | dfsclnbgr2.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
4 | 1 2 3 | sclnbgrel | ⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) ) |
5 | 4 | simplbi | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉 ) |