Metamath Proof Explorer


Theorem sclnbgrisvtx

Description: Every member X of the semiclosed neighborhood of a vertex N is a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion sclnbgrisvtx
|- ( X e. S -> X e. V )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 1 2 3 sclnbgrel
 |-  ( X e. S <-> ( X e. V /\ E. e e. E { N , X } C_ e ) )
5 4 simplbi
 |-  ( X e. S -> X e. V )