Description: Every member X of the semiclosed neighborhood of a vertex N is a vertex. (Contributed by AV, 16-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfsclnbgr2.v | |- V = ( Vtx ` G ) |
|
dfsclnbgr2.s | |- S = { n e. V | E. e e. E { N , n } C_ e } |
||
dfsclnbgr2.e | |- E = ( Edg ` G ) |
||
Assertion | sclnbgrisvtx | |- ( X e. S -> X e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsclnbgr2.v | |- V = ( Vtx ` G ) |
|
2 | dfsclnbgr2.s | |- S = { n e. V | E. e e. E { N , n } C_ e } |
|
3 | dfsclnbgr2.e | |- E = ( Edg ` G ) |
|
4 | 1 2 3 | sclnbgrel | |- ( X e. S <-> ( X e. V /\ E. e e. E { N , X } C_ e ) ) |
5 | 4 | simplbi | |- ( X e. S -> X e. V ) |