Metamath Proof Explorer


Theorem dfclnbgr5

Description: Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiclosed neighborhood. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion dfclnbgr5
|- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. S ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 1 3 dfclnbgr2
 |-  ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) )
5 1 2 3 dfsclnbgr2
 |-  ( N e. V -> S = { n e. V | E. e e. E ( N e. e /\ n e. e ) } )
6 5 uneq2d
 |-  ( N e. V -> ( { N } u. S ) = ( { N } u. { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) )
7 4 6 eqtr4d
 |-  ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. S ) )