Metamath Proof Explorer


Theorem dfnbgr5

Description: Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion dfnbgr5
|- ( N e. V -> ( G NeighbVtx N ) = ( S \ { N } ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 rabdif
 |-  ( { n e. V | E. e e. E ( N e. e /\ n e. e ) } \ { N } ) = { n e. ( V \ { N } ) | E. e e. E ( N e. e /\ n e. e ) }
5 4 eqcomi
 |-  { n e. ( V \ { N } ) | E. e e. E ( N e. e /\ n e. e ) } = ( { n e. V | E. e e. E ( N e. e /\ n e. e ) } \ { N } )
6 1 3 dfnbgr2
 |-  ( N e. V -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. E ( N e. e /\ n e. e ) } )
7 1 2 3 dfsclnbgr2
 |-  ( N e. V -> S = { n e. V | E. e e. E ( N e. e /\ n e. e ) } )
8 7 difeq1d
 |-  ( N e. V -> ( S \ { N } ) = ( { n e. V | E. e e. E ( N e. e /\ n e. e ) } \ { N } ) )
9 5 6 8 3eqtr4a
 |-  ( N e. V -> ( G NeighbVtx N ) = ( S \ { N } ) )