Step |
Hyp |
Ref |
Expression |
1 |
|
dfsclnbgr2.v |
|- V = ( Vtx ` G ) |
2 |
|
dfsclnbgr2.s |
|- S = { n e. V | E. e e. E { N , n } C_ e } |
3 |
|
dfsclnbgr2.e |
|- E = ( Edg ` G ) |
4 |
1 2 3
|
dfnbgr5 |
|- ( N e. V -> ( G NeighbVtx N ) = ( S \ { N } ) ) |
5 |
|
difss |
|- ( S \ { N } ) C_ S |
6 |
4 5
|
eqsstrdi |
|- ( N e. V -> ( G NeighbVtx N ) C_ S ) |
7 |
|
ssun2 |
|- S C_ ( { N } u. S ) |
8 |
1 2 3
|
dfclnbgr5 |
|- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. S ) ) |
9 |
7 8
|
sseqtrrid |
|- ( N e. V -> S C_ ( G ClNeighbVtx N ) ) |
10 |
6 9
|
jca |
|- ( N e. V -> ( ( G NeighbVtx N ) C_ S /\ S C_ ( G ClNeighbVtx N ) ) ) |