Metamath Proof Explorer


Theorem dfnbgrss

Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion dfnbgrss
|- ( N e. V -> ( ( G NeighbVtx N ) C_ S /\ S C_ ( G ClNeighbVtx N ) ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 1 2 3 dfnbgr5
 |-  ( N e. V -> ( G NeighbVtx N ) = ( S \ { N } ) )
5 difss
 |-  ( S \ { N } ) C_ S
6 4 5 eqsstrdi
 |-  ( N e. V -> ( G NeighbVtx N ) C_ S )
7 ssun2
 |-  S C_ ( { N } u. S )
8 1 2 3 dfclnbgr5
 |-  ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. S ) )
9 7 8 sseqtrrid
 |-  ( N e. V -> S C_ ( G ClNeighbVtx N ) )
10 6 9 jca
 |-  ( N e. V -> ( ( G NeighbVtx N ) C_ S /\ S C_ ( G ClNeighbVtx N ) ) )