Metamath Proof Explorer


Theorem dfnbgrss

Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion dfnbgrss ( 𝑁𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
3 dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
4 1 2 3 dfnbgr5 ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑆 ∖ { 𝑁 } ) )
5 difss ( 𝑆 ∖ { 𝑁 } ) ⊆ 𝑆
6 4 5 eqsstrdi ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆 )
7 ssun2 𝑆 ⊆ ( { 𝑁 } ∪ 𝑆 )
8 1 2 3 dfclnbgr5 ( 𝑁𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ 𝑆 ) )
9 7 8 sseqtrrid ( 𝑁𝑉𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) )
10 6 9 jca ( 𝑁𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) )