| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsclnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
dfsclnbgr2.s |
⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } |
| 3 |
|
dfsclnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
1 2 3
|
dfnbgr5 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑆 ∖ { 𝑁 } ) ) |
| 5 |
|
difss |
⊢ ( 𝑆 ∖ { 𝑁 } ) ⊆ 𝑆 |
| 6 |
4 5
|
eqsstrdi |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆 ) |
| 7 |
|
ssun2 |
⊢ 𝑆 ⊆ ( { 𝑁 } ∪ 𝑆 ) |
| 8 |
1 2 3
|
dfclnbgr5 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ 𝑆 ) ) |
| 9 |
7 8
|
sseqtrrid |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) |
| 10 |
6 9
|
jca |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) ) |