| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsclnbgr2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | dfsclnbgr2.s | ⊢ 𝑆  =  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } | 
						
							| 3 |  | dfsclnbgr2.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 |  | rabdif | ⊢ ( { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) }  ∖  { 𝑁 } )  =  { 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } )  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) } | 
						
							| 5 | 4 | eqcomi | ⊢ { 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } )  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) }  =  ( { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) }  ∖  { 𝑁 } ) | 
						
							| 6 | 1 3 | dfnbgr2 | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝐺  NeighbVtx  𝑁 )  =  { 𝑛  ∈  ( 𝑉  ∖  { 𝑁 } )  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) } ) | 
						
							| 7 | 1 2 3 | dfsclnbgr2 | ⊢ ( 𝑁  ∈  𝑉  →  𝑆  =  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) } ) | 
						
							| 8 | 7 | difeq1d | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑆  ∖  { 𝑁 } )  =  ( { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 ( 𝑁  ∈  𝑒  ∧  𝑛  ∈  𝑒 ) }  ∖  { 𝑁 } ) ) | 
						
							| 9 | 5 6 8 | 3eqtr4a | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑆  ∖  { 𝑁 } ) ) |