| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsclnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
dfsclnbgr2.s |
⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } |
| 3 |
|
dfsclnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
|
rabdif |
⊢ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } |
| 5 |
4
|
eqcomi |
⊢ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } = ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) |
| 6 |
1 3
|
dfnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
| 7 |
1 2 3
|
dfsclnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
| 8 |
7
|
difeq1d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑆 ∖ { 𝑁 } ) = ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) ) |
| 9 |
5 6 8
|
3eqtr4a |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑆 ∖ { 𝑁 } ) ) |