Metamath Proof Explorer


Theorem dfnbgr5

Description: Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion dfnbgr5 ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑆 ∖ { 𝑁 } ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
3 dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
4 rabdif ( { 𝑛𝑉 ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) }
5 4 eqcomi { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } = ( { 𝑛𝑉 ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } ∖ { 𝑁 } )
6 1 3 dfnbgr2 ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } )
7 1 2 3 dfsclnbgr2 ( 𝑁𝑉𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } )
8 7 difeq1d ( 𝑁𝑉 → ( 𝑆 ∖ { 𝑁 } ) = ( { 𝑛𝑉 ∣ ∃ 𝑒𝐸 ( 𝑁𝑒𝑛𝑒 ) } ∖ { 𝑁 } ) )
9 5 6 8 3eqtr4a ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑆 ∖ { 𝑁 } ) )