Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rabdif | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ 𝐵 ) = { 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∣ 𝜑 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 | ⊢ ( { 𝑥 ∣ 𝜑 } ∩ ( 𝐴 ∖ 𝐵 ) ) = ( ( { 𝑥 ∣ 𝜑 } ∩ 𝐴 ) ∖ 𝐵 ) | |
2 | dfrab2 | ⊢ { 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∣ 𝜑 } = ( { 𝑥 ∣ 𝜑 } ∩ ( 𝐴 ∖ 𝐵 ) ) | |
3 | dfrab2 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( { 𝑥 ∣ 𝜑 } ∩ 𝐴 ) | |
4 | 3 | difeq1i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ 𝐵 ) = ( ( { 𝑥 ∣ 𝜑 } ∩ 𝐴 ) ∖ 𝐵 ) |
5 | 1 2 4 | 3eqtr4ri | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∖ 𝐵 ) = { 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∣ 𝜑 } |