| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axrep6 |
⊢ ( ∀ 𝑤 ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ) |
| 2 |
|
19.37v |
⊢ ( ∃ 𝑦 ( 𝑤 ∈ 𝑥 → ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑥 → ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 3 |
|
impexp |
⊢ ( ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ↔ ( 𝑤 ∈ 𝑥 → ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝑤 ∈ 𝑥 → ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 5 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑤 ∈ 𝑥 → ( 𝜑 → 𝑧 = 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑥 → ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ↔ ( 𝑤 ∈ 𝑥 → ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ( 𝑤 ∈ 𝑥 → ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 8 |
|
df-mo |
⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 9 |
8
|
imbi2i |
⊢ ( ( 𝑤 ∈ 𝑥 → ∃* 𝑧 𝜑 ) ↔ ( 𝑤 ∈ 𝑥 → ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 10 |
2 7 9
|
3bitr4i |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ↔ ( 𝑤 ∈ 𝑥 → ∃* 𝑧 𝜑 ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃* 𝑧 𝜑 ) ) |
| 12 |
|
df-mo |
⊢ ( ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑤 ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) → 𝑧 = 𝑦 ) ) |
| 14 |
|
df-ral |
⊢ ( ∀ 𝑤 ∈ 𝑥 ∃* 𝑧 𝜑 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃* 𝑧 𝜑 ) ) |
| 15 |
11 13 14
|
3bitr4i |
⊢ ( ∀ 𝑤 ∃* 𝑧 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ↔ ∀ 𝑤 ∈ 𝑥 ∃* 𝑧 𝜑 ) |
| 16 |
|
rexanid |
⊢ ( ∃ 𝑤 ∈ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) |
| 17 |
16
|
bibi2i |
⊢ ( ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |
| 18 |
17
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |
| 19 |
18
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |
| 20 |
1 15 19
|
3imtr3i |
⊢ ( ∀ 𝑤 ∈ 𝑥 ∃* 𝑧 𝜑 → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 𝜑 ) ) |