Metamath Proof Explorer


Theorem sn-axrep5v

Description: A condensed form of axrep5 . (Contributed by SN, 21-Sep-2023)

Ref Expression
Assertion sn-axrep5v ( ∀ 𝑤𝑥 ∃* 𝑧 𝜑 → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 axrep6 ( ∀ 𝑤 ∃* 𝑧 ( 𝑤𝑥𝜑 ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 ( 𝑤𝑥𝜑 ) ) )
2 19.37v ( ∃ 𝑦 ( 𝑤𝑥 → ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) ) ↔ ( 𝑤𝑥 → ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) ) )
3 impexp ( ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) ↔ ( 𝑤𝑥 → ( 𝜑𝑧 = 𝑦 ) ) )
4 3 albii ( ∀ 𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝑤𝑥 → ( 𝜑𝑧 = 𝑦 ) ) )
5 19.21v ( ∀ 𝑧 ( 𝑤𝑥 → ( 𝜑𝑧 = 𝑦 ) ) ↔ ( 𝑤𝑥 → ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) ) )
6 4 5 bitri ( ∀ 𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) ↔ ( 𝑤𝑥 → ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) ) )
7 6 exbii ( ∃ 𝑦𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ( 𝑤𝑥 → ∀ 𝑧 ( 𝜑𝑧 = 𝑦 ) ) )
8 df-mo ( ∃* 𝑧 𝜑 ↔ ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) )
9 8 imbi2i ( ( 𝑤𝑥 → ∃* 𝑧 𝜑 ) ↔ ( 𝑤𝑥 → ∃ 𝑦𝑧 ( 𝜑𝑧 = 𝑦 ) ) )
10 2 7 9 3bitr4i ( ∃ 𝑦𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) ↔ ( 𝑤𝑥 → ∃* 𝑧 𝜑 ) )
11 10 albii ( ∀ 𝑤𝑦𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 ( 𝑤𝑥 → ∃* 𝑧 𝜑 ) )
12 df-mo ( ∃* 𝑧 ( 𝑤𝑥𝜑 ) ↔ ∃ 𝑦𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) )
13 12 albii ( ∀ 𝑤 ∃* 𝑧 ( 𝑤𝑥𝜑 ) ↔ ∀ 𝑤𝑦𝑧 ( ( 𝑤𝑥𝜑 ) → 𝑧 = 𝑦 ) )
14 df-ral ( ∀ 𝑤𝑥 ∃* 𝑧 𝜑 ↔ ∀ 𝑤 ( 𝑤𝑥 → ∃* 𝑧 𝜑 ) )
15 11 13 14 3bitr4i ( ∀ 𝑤 ∃* 𝑧 ( 𝑤𝑥𝜑 ) ↔ ∀ 𝑤𝑥 ∃* 𝑧 𝜑 )
16 rexanid ( ∃ 𝑤𝑥 ( 𝑤𝑥𝜑 ) ↔ ∃ 𝑤𝑥 𝜑 )
17 16 bibi2i ( ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 ( 𝑤𝑥𝜑 ) ) ↔ ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )
18 17 albii ( ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 ( 𝑤𝑥𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )
19 18 exbii ( ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 ( 𝑤𝑥𝜑 ) ) ↔ ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )
20 1 15 19 3imtr3i ( ∀ 𝑤𝑥 ∃* 𝑧 𝜑 → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 𝜑 ) )