Metamath Proof Explorer


Theorem sn-axrep5v

Description: A condensed form of axrep5 . (Contributed by SN, 21-Sep-2023)

Ref Expression
Assertion sn-axrep5v wx*zφyzzywxφ

Proof

Step Hyp Ref Expression
1 axrep6 w*zwxφyzzywxwxφ
2 19.37v ywxzφz=ywxyzφz=y
3 impexp wxφz=ywxφz=y
4 3 albii zwxφz=yzwxφz=y
5 19.21v zwxφz=ywxzφz=y
6 4 5 bitri zwxφz=ywxzφz=y
7 6 exbii yzwxφz=yywxzφz=y
8 df-mo *zφyzφz=y
9 8 imbi2i wx*zφwxyzφz=y
10 2 7 9 3bitr4i yzwxφz=ywx*zφ
11 10 albii wyzwxφz=ywwx*zφ
12 df-mo *zwxφyzwxφz=y
13 12 albii w*zwxφwyzwxφz=y
14 df-ral wx*zφwwx*zφ
15 11 13 14 3bitr4i w*zwxφwx*zφ
16 rexanid wxwxφwxφ
17 16 bibi2i zywxwxφzywxφ
18 17 albii zzywxwxφzzywxφ
19 18 exbii yzzywxwxφyzzywxφ
20 1 15 19 3imtr3i wx*zφyzzywxφ