Metamath Proof Explorer


Theorem sn-axprlem3

Description: axprlem3 using only Tarski's FOL axiom schemes and ax-rep . (Contributed by SN, 22-Sep-2023)

Ref Expression
Assertion sn-axprlem3 y z z y w x if- φ z = a z = b

Proof

Step Hyp Ref Expression
1 axrep6 w * z if- φ z = a z = b y z z y w x if- φ z = a z = b
2 ax6evr y a = y
3 ifptru φ if- φ z = a z = b z = a
4 3 biimpd φ if- φ z = a z = b z = a
5 equtrr a = y z = a z = y
6 4 5 sylan9r a = y φ if- φ z = a z = b z = y
7 6 alrimiv a = y φ z if- φ z = a z = b z = y
8 7 expcom φ a = y z if- φ z = a z = b z = y
9 8 eximdv φ y a = y y z if- φ z = a z = b z = y
10 2 9 mpi φ y z if- φ z = a z = b z = y
11 ax6evr y b = y
12 ifpfal ¬ φ if- φ z = a z = b z = b
13 12 biimpd ¬ φ if- φ z = a z = b z = b
14 equtrr b = y z = b z = y
15 13 14 sylan9r b = y ¬ φ if- φ z = a z = b z = y
16 15 alrimiv b = y ¬ φ z if- φ z = a z = b z = y
17 16 expcom ¬ φ b = y z if- φ z = a z = b z = y
18 17 eximdv ¬ φ y b = y y z if- φ z = a z = b z = y
19 11 18 mpi ¬ φ y z if- φ z = a z = b z = y
20 10 19 pm2.61i y z if- φ z = a z = b z = y
21 df-mo * z if- φ z = a z = b y z if- φ z = a z = b z = y
22 20 21 mpbir * z if- φ z = a z = b
23 1 22 mpg y z z y w x if- φ z = a z = b