| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axrep6 |  |-  ( A. w E* z if- ( ph , z = a , z = b ) -> E. y A. z ( z e. y <-> E. w e. x if- ( ph , z = a , z = b ) ) ) | 
						
							| 2 |  | ax6evr |  |-  E. y a = y | 
						
							| 3 |  | ifptru |  |-  ( ph -> ( if- ( ph , z = a , z = b ) <-> z = a ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( ph -> ( if- ( ph , z = a , z = b ) -> z = a ) ) | 
						
							| 5 |  | equtrr |  |-  ( a = y -> ( z = a -> z = y ) ) | 
						
							| 6 | 4 5 | sylan9r |  |-  ( ( a = y /\ ph ) -> ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 7 | 6 | alrimiv |  |-  ( ( a = y /\ ph ) -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 8 | 7 | expcom |  |-  ( ph -> ( a = y -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) | 
						
							| 9 | 8 | eximdv |  |-  ( ph -> ( E. y a = y -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) | 
						
							| 10 | 2 9 | mpi |  |-  ( ph -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 11 |  | ax6evr |  |-  E. y b = y | 
						
							| 12 |  | ifpfal |  |-  ( -. ph -> ( if- ( ph , z = a , z = b ) <-> z = b ) ) | 
						
							| 13 | 12 | biimpd |  |-  ( -. ph -> ( if- ( ph , z = a , z = b ) -> z = b ) ) | 
						
							| 14 |  | equtrr |  |-  ( b = y -> ( z = b -> z = y ) ) | 
						
							| 15 | 13 14 | sylan9r |  |-  ( ( b = y /\ -. ph ) -> ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 16 | 15 | alrimiv |  |-  ( ( b = y /\ -. ph ) -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 17 | 16 | expcom |  |-  ( -. ph -> ( b = y -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) | 
						
							| 18 | 17 | eximdv |  |-  ( -. ph -> ( E. y b = y -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) | 
						
							| 19 | 11 18 | mpi |  |-  ( -. ph -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 20 | 10 19 | pm2.61i |  |-  E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) | 
						
							| 21 |  | df-mo |  |-  ( E* z if- ( ph , z = a , z = b ) <-> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) | 
						
							| 22 | 20 21 | mpbir |  |-  E* z if- ( ph , z = a , z = b ) | 
						
							| 23 | 1 22 | mpg |  |-  E. y A. z ( z e. y <-> E. w e. x if- ( ph , z = a , z = b ) ) |