| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axrep6 |
|- ( A. w E* z if- ( ph , z = a , z = b ) -> E. y A. z ( z e. y <-> E. w e. x if- ( ph , z = a , z = b ) ) ) |
| 2 |
|
ax6evr |
|- E. y a = y |
| 3 |
|
ifptru |
|- ( ph -> ( if- ( ph , z = a , z = b ) <-> z = a ) ) |
| 4 |
3
|
biimpd |
|- ( ph -> ( if- ( ph , z = a , z = b ) -> z = a ) ) |
| 5 |
|
equtrr |
|- ( a = y -> ( z = a -> z = y ) ) |
| 6 |
4 5
|
sylan9r |
|- ( ( a = y /\ ph ) -> ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 7 |
6
|
alrimiv |
|- ( ( a = y /\ ph ) -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 8 |
7
|
expcom |
|- ( ph -> ( a = y -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) |
| 9 |
8
|
eximdv |
|- ( ph -> ( E. y a = y -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) |
| 10 |
2 9
|
mpi |
|- ( ph -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 11 |
|
ax6evr |
|- E. y b = y |
| 12 |
|
ifpfal |
|- ( -. ph -> ( if- ( ph , z = a , z = b ) <-> z = b ) ) |
| 13 |
12
|
biimpd |
|- ( -. ph -> ( if- ( ph , z = a , z = b ) -> z = b ) ) |
| 14 |
|
equtrr |
|- ( b = y -> ( z = b -> z = y ) ) |
| 15 |
13 14
|
sylan9r |
|- ( ( b = y /\ -. ph ) -> ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 16 |
15
|
alrimiv |
|- ( ( b = y /\ -. ph ) -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 17 |
16
|
expcom |
|- ( -. ph -> ( b = y -> A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) |
| 18 |
17
|
eximdv |
|- ( -. ph -> ( E. y b = y -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) ) |
| 19 |
11 18
|
mpi |
|- ( -. ph -> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 20 |
10 19
|
pm2.61i |
|- E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) |
| 21 |
|
df-mo |
|- ( E* z if- ( ph , z = a , z = b ) <-> E. y A. z ( if- ( ph , z = a , z = b ) -> z = y ) ) |
| 22 |
20 21
|
mpbir |
|- E* z if- ( ph , z = a , z = b ) |
| 23 |
1 22
|
mpg |
|- E. y A. z ( z e. y <-> E. w e. x if- ( ph , z = a , z = b ) ) |