Metamath Proof Explorer


Theorem sn-axprlem3

Description: axprlem3 using only Tarski's FOL axiom schemes and ax-rep . (Contributed by SN, 22-Sep-2023)

Ref Expression
Assertion sn-axprlem3 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) )

Proof

Step Hyp Ref Expression
1 axrep6 ( ∀ 𝑤 ∃* 𝑧 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → ∃ 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ) )
2 ax6evr 𝑦 𝑎 = 𝑦
3 ifptru ( 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ↔ 𝑧 = 𝑎 ) )
4 3 biimpd ( 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑎 ) )
5 equtrr ( 𝑎 = 𝑦 → ( 𝑧 = 𝑎𝑧 = 𝑦 ) )
6 4 5 sylan9r ( ( 𝑎 = 𝑦𝜑 ) → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
7 6 alrimiv ( ( 𝑎 = 𝑦𝜑 ) → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
8 7 expcom ( 𝜑 → ( 𝑎 = 𝑦 → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) )
9 8 eximdv ( 𝜑 → ( ∃ 𝑦 𝑎 = 𝑦 → ∃ 𝑦𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) )
10 2 9 mpi ( 𝜑 → ∃ 𝑦𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
11 ax6evr 𝑦 𝑏 = 𝑦
12 ifpfal ( ¬ 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ↔ 𝑧 = 𝑏 ) )
13 12 biimpd ( ¬ 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑏 ) )
14 equtrr ( 𝑏 = 𝑦 → ( 𝑧 = 𝑏𝑧 = 𝑦 ) )
15 13 14 sylan9r ( ( 𝑏 = 𝑦 ∧ ¬ 𝜑 ) → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
16 15 alrimiv ( ( 𝑏 = 𝑦 ∧ ¬ 𝜑 ) → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
17 16 expcom ( ¬ 𝜑 → ( 𝑏 = 𝑦 → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) )
18 17 eximdv ( ¬ 𝜑 → ( ∃ 𝑦 𝑏 = 𝑦 → ∃ 𝑦𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) )
19 11 18 mpi ( ¬ 𝜑 → ∃ 𝑦𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
20 10 19 pm2.61i 𝑦𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 )
21 df-mo ( ∃* 𝑧 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ↔ ∃ 𝑦𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) )
22 20 21 mpbir ∃* 𝑧 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 )
23 1 22 mpg 𝑦𝑧 ( 𝑧𝑦 ↔ ∃ 𝑤𝑥 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) )