| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axrep6 | ⊢ ( ∀ 𝑤 ∃* 𝑧 if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤  ∈  𝑥 if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 ) ) ) | 
						
							| 2 |  | ax6evr | ⊢ ∃ 𝑦 𝑎  =  𝑦 | 
						
							| 3 |  | ifptru | ⊢ ( 𝜑  →  ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  ↔  𝑧  =  𝑎 ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( 𝜑  →  ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑎 ) ) | 
						
							| 5 |  | equtrr | ⊢ ( 𝑎  =  𝑦  →  ( 𝑧  =  𝑎  →  𝑧  =  𝑦 ) ) | 
						
							| 6 | 4 5 | sylan9r | ⊢ ( ( 𝑎  =  𝑦  ∧  𝜑 )  →  ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 7 | 6 | alrimiv | ⊢ ( ( 𝑎  =  𝑦  ∧  𝜑 )  →  ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 8 | 7 | expcom | ⊢ ( 𝜑  →  ( 𝑎  =  𝑦  →  ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 9 | 8 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑦 𝑎  =  𝑦  →  ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 10 | 2 9 | mpi | ⊢ ( 𝜑  →  ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 11 |  | ax6evr | ⊢ ∃ 𝑦 𝑏  =  𝑦 | 
						
							| 12 |  | ifpfal | ⊢ ( ¬  𝜑  →  ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  ↔  𝑧  =  𝑏 ) ) | 
						
							| 13 | 12 | biimpd | ⊢ ( ¬  𝜑  →  ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑏 ) ) | 
						
							| 14 |  | equtrr | ⊢ ( 𝑏  =  𝑦  →  ( 𝑧  =  𝑏  →  𝑧  =  𝑦 ) ) | 
						
							| 15 | 13 14 | sylan9r | ⊢ ( ( 𝑏  =  𝑦  ∧  ¬  𝜑 )  →  ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 16 | 15 | alrimiv | ⊢ ( ( 𝑏  =  𝑦  ∧  ¬  𝜑 )  →  ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 17 | 16 | expcom | ⊢ ( ¬  𝜑  →  ( 𝑏  =  𝑦  →  ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 18 | 17 | eximdv | ⊢ ( ¬  𝜑  →  ( ∃ 𝑦 𝑏  =  𝑦  →  ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) ) | 
						
							| 19 | 11 18 | mpi | ⊢ ( ¬  𝜑  →  ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 20 | 10 19 | pm2.61i | ⊢ ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) | 
						
							| 21 |  | df-mo | ⊢ ( ∃* 𝑧 if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  ↔  ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 )  →  𝑧  =  𝑦 ) ) | 
						
							| 22 | 20 21 | mpbir | ⊢ ∃* 𝑧 if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 ) | 
						
							| 23 | 1 22 | mpg | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑤  ∈  𝑥 if- ( 𝜑 ,  𝑧  =  𝑎 ,  𝑧  =  𝑏 ) ) |