Step |
Hyp |
Ref |
Expression |
1 |
|
axrep6 |
⊢ ( ∀ 𝑤 ∃* 𝑧 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ) ) |
2 |
|
ax6evr |
⊢ ∃ 𝑦 𝑎 = 𝑦 |
3 |
|
ifptru |
⊢ ( 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ↔ 𝑧 = 𝑎 ) ) |
4 |
3
|
biimpd |
⊢ ( 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑎 ) ) |
5 |
|
equtrr |
⊢ ( 𝑎 = 𝑦 → ( 𝑧 = 𝑎 → 𝑧 = 𝑦 ) ) |
6 |
4 5
|
sylan9r |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝜑 ) → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
7 |
6
|
alrimiv |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝜑 ) → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
8 |
7
|
expcom |
⊢ ( 𝜑 → ( 𝑎 = 𝑦 → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) ) |
9 |
8
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 𝑎 = 𝑦 → ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) ) |
10 |
2 9
|
mpi |
⊢ ( 𝜑 → ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
11 |
|
ax6evr |
⊢ ∃ 𝑦 𝑏 = 𝑦 |
12 |
|
ifpfal |
⊢ ( ¬ 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ↔ 𝑧 = 𝑏 ) ) |
13 |
12
|
biimpd |
⊢ ( ¬ 𝜑 → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑏 ) ) |
14 |
|
equtrr |
⊢ ( 𝑏 = 𝑦 → ( 𝑧 = 𝑏 → 𝑧 = 𝑦 ) ) |
15 |
13 14
|
sylan9r |
⊢ ( ( 𝑏 = 𝑦 ∧ ¬ 𝜑 ) → ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
16 |
15
|
alrimiv |
⊢ ( ( 𝑏 = 𝑦 ∧ ¬ 𝜑 ) → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
17 |
16
|
expcom |
⊢ ( ¬ 𝜑 → ( 𝑏 = 𝑦 → ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) ) |
18 |
17
|
eximdv |
⊢ ( ¬ 𝜑 → ( ∃ 𝑦 𝑏 = 𝑦 → ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) ) |
19 |
11 18
|
mpi |
⊢ ( ¬ 𝜑 → ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
20 |
10 19
|
pm2.61i |
⊢ ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) |
21 |
|
df-mo |
⊢ ( ∃* 𝑧 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ↔ ∃ 𝑦 ∀ 𝑧 ( if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) → 𝑧 = 𝑦 ) ) |
22 |
20 21
|
mpbir |
⊢ ∃* 𝑧 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) |
23 |
1 22
|
mpg |
⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 if- ( 𝜑 , 𝑧 = 𝑎 , 𝑧 = 𝑏 ) ) |