Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rabdif | |- ( { x e. A | ph } \ B ) = { x e. ( A \ B ) | ph } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 | |- ( { x | ph } i^i ( A \ B ) ) = ( ( { x | ph } i^i A ) \ B ) |
|
2 | dfrab2 | |- { x e. ( A \ B ) | ph } = ( { x | ph } i^i ( A \ B ) ) |
|
3 | dfrab2 | |- { x e. A | ph } = ( { x | ph } i^i A ) |
|
4 | 3 | difeq1i | |- ( { x e. A | ph } \ B ) = ( ( { x | ph } i^i A ) \ B ) |
5 | 1 2 4 | 3eqtr4ri | |- ( { x e. A | ph } \ B ) = { x e. ( A \ B ) | ph } |