Metamath Proof Explorer


Theorem rabdif

Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023)

Ref Expression
Assertion rabdif xA|φB=xAB|φ

Proof

Step Hyp Ref Expression
1 indif2 x|φAB=x|φAB
2 dfrab2 xAB|φ=x|φAB
3 dfrab2 xA|φ=x|φA
4 3 difeq1i xA|φB=x|φAB
5 1 2 4 3eqtr4ri xA|φB=xAB|φ