Metamath Proof Explorer


Theorem dfnbgr5

Description: Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v V = Vtx G
dfsclnbgr2.s S = n V | e E N n e
dfsclnbgr2.e E = Edg G
Assertion dfnbgr5 N V G NeighbVtx N = S N

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v V = Vtx G
2 dfsclnbgr2.s S = n V | e E N n e
3 dfsclnbgr2.e E = Edg G
4 rabdif n V | e E N e n e N = n V N | e E N e n e
5 4 eqcomi n V N | e E N e n e = n V | e E N e n e N
6 1 3 dfnbgr2 N V G NeighbVtx N = n V N | e E N e n e
7 1 2 3 dfsclnbgr2 N V S = n V | e E N e n e
8 7 difeq1d N V S N = n V | e E N e n e N
9 5 6 8 3eqtr4a N V G NeighbVtx N = S N