Description: Alternate definition of the semiclosed neighborhood of a vertex breaking up the subset relationship of an unordered pair. Asemiclosed neighborhood S of a vertex N is the set of all vertices incident with edges which join the vertex N with a vertex. Therefore, a vertex is contained in its semiclosed neighborhood if it is connected with any vertex by an edge (see sclnbgrelself ), even only with itself (i.e., by a loop). (Contributed by AV, 16-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfsclnbgr2.v | |- V = ( Vtx ` G ) | |
| dfsclnbgr2.s | |- S = { n e. V | E. e e. E { N , n } C_ e } | ||
| dfsclnbgr2.e | |- E = ( Edg ` G ) | ||
| Assertion | dfsclnbgr2 | |- ( N e. V -> S = { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsclnbgr2.v | |- V = ( Vtx ` G ) | |
| 2 | dfsclnbgr2.s |  |-  S = { n e. V | E. e e. E { N , n } C_ e } | |
| 3 | dfsclnbgr2.e | |- E = ( Edg ` G ) | |
| 4 | prssg |  |-  ( ( N e. V /\ n e. V ) -> ( ( N e. e /\ n e. e ) <-> { N , n } C_ e ) ) | |
| 5 | 4 | bicomd |  |-  ( ( N e. V /\ n e. V ) -> ( { N , n } C_ e <-> ( N e. e /\ n e. e ) ) ) | 
| 6 | 5 | rexbidv |  |-  ( ( N e. V /\ n e. V ) -> ( E. e e. E { N , n } C_ e <-> E. e e. E ( N e. e /\ n e. e ) ) ) | 
| 7 | 6 | rabbidva |  |-  ( N e. V -> { n e. V | E. e e. E { N , n } C_ e } = { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) | 
| 8 | 2 7 | eqtrid |  |-  ( N e. V -> S = { n e. V | E. e e. E ( N e. e /\ n e. e ) } ) |