Metamath Proof Explorer


Theorem dfsclnbgr2

Description: Alternate definition of the semiclosed neighborhood of a vertex breaking up the subset relationship of an unordered pair. Asemiclosed neighborhood S of a vertex N is the set of all vertices incident with edges which join the vertex N with a vertex. Therefore, a vertex is contained in its semiclosed neighborhood if it is connected with any vertex by an edge (see sclnbgrelself ), even only with itself (i.e., by a loop). (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion dfsclnbgr2
|- ( N e. V -> S = { n e. V | E. e e. E ( N e. e /\ n e. e ) } )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 prssg
 |-  ( ( N e. V /\ n e. V ) -> ( ( N e. e /\ n e. e ) <-> { N , n } C_ e ) )
5 4 bicomd
 |-  ( ( N e. V /\ n e. V ) -> ( { N , n } C_ e <-> ( N e. e /\ n e. e ) ) )
6 5 rexbidv
 |-  ( ( N e. V /\ n e. V ) -> ( E. e e. E { N , n } C_ e <-> E. e e. E ( N e. e /\ n e. e ) ) )
7 6 rabbidva
 |-  ( N e. V -> { n e. V | E. e e. E { N , n } C_ e } = { n e. V | E. e e. E ( N e. e /\ n e. e ) } )
8 2 7 eqtrid
 |-  ( N e. V -> S = { n e. V | E. e e. E ( N e. e /\ n e. e ) } )