Metamath Proof Explorer


Theorem sclnbgrel

Description: Characterization of a member X of the semiclosed neighborhood of a vertex N in a graph G . (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion sclnbgrel
|- ( X e. S <-> ( X e. V /\ E. e e. E { N , X } C_ e ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 2 eleq2i
 |-  ( X e. S <-> X e. { n e. V | E. e e. E { N , n } C_ e } )
5 preq2
 |-  ( n = X -> { N , n } = { N , X } )
6 5 sseq1d
 |-  ( n = X -> ( { N , n } C_ e <-> { N , X } C_ e ) )
7 6 rexbidv
 |-  ( n = X -> ( E. e e. E { N , n } C_ e <-> E. e e. E { N , X } C_ e ) )
8 7 elrab
 |-  ( X e. { n e. V | E. e e. E { N , n } C_ e } <-> ( X e. V /\ E. e e. E { N , X } C_ e ) )
9 4 8 bitri
 |-  ( X e. S <-> ( X e. V /\ E. e e. E { N , X } C_ e ) )