Metamath Proof Explorer


Theorem sclnbgrelself

Description: A vertex N is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v
|- V = ( Vtx ` G )
dfsclnbgr2.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
dfsclnbgr2.e
|- E = ( Edg ` G )
Assertion sclnbgrelself
|- ( N e. S <-> ( N e. V /\ E. e e. E N e. e ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v
 |-  V = ( Vtx ` G )
2 dfsclnbgr2.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
3 dfsclnbgr2.e
 |-  E = ( Edg ` G )
4 1 2 3 sclnbgrel
 |-  ( N e. S <-> ( N e. V /\ E. e e. E { N , N } C_ e ) )
5 dfsn2
 |-  { N } = { N , N }
6 5 eqcomi
 |-  { N , N } = { N }
7 6 sseq1i
 |-  ( { N , N } C_ e <-> { N } C_ e )
8 snssg
 |-  ( N e. V -> ( N e. e <-> { N } C_ e ) )
9 7 8 bitr4id
 |-  ( N e. V -> ( { N , N } C_ e <-> N e. e ) )
10 9 rexbidv
 |-  ( N e. V -> ( E. e e. E { N , N } C_ e <-> E. e e. E N e. e ) )
11 10 pm5.32i
 |-  ( ( N e. V /\ E. e e. E { N , N } C_ e ) <-> ( N e. V /\ E. e e. E N e. e ) )
12 4 11 bitri
 |-  ( N e. S <-> ( N e. V /\ E. e e. E N e. e ) )