Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Cauchy sequences and completeness axiom Cauchy sequences and limits seq1hcau  
				
		 
		
			
		 
		Description:   A sequence on a Hilbert space is a Cauchy sequence if it converges.
       (Contributed by NM , 16-Aug-1999)   (Revised by Mario Carneiro , 14-May-2014)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					seq1hcau ⊢   ( 𝐹  : ℕ ⟶  ℋ  →  ( 𝐹   ∈  Cauchy  ↔  ∀ 𝑥   ∈  ℝ+  ∃ 𝑦   ∈  ℕ ∀ 𝑧   ∈  ( ℤ≥  ‘ 𝑦  ) ( normℎ  ‘ ( ( 𝐹  ‘ 𝑦  )  −ℎ   ( 𝐹  ‘ 𝑧  ) ) )  <  𝑥  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							hcau ⊢  ( 𝐹   ∈  Cauchy  ↔  ( 𝐹  : ℕ ⟶  ℋ  ∧  ∀ 𝑥   ∈  ℝ+  ∃ 𝑦   ∈  ℕ ∀ 𝑧   ∈  ( ℤ≥  ‘ 𝑦  ) ( normℎ  ‘ ( ( 𝐹  ‘ 𝑦  )  −ℎ   ( 𝐹  ‘ 𝑧  ) ) )  <  𝑥  ) )  
						
							2 
								1 
							 
							baib ⊢  ( 𝐹  : ℕ ⟶  ℋ  →  ( 𝐹   ∈  Cauchy  ↔  ∀ 𝑥   ∈  ℝ+  ∃ 𝑦   ∈  ℕ ∀ 𝑧   ∈  ( ℤ≥  ‘ 𝑦  ) ( normℎ  ‘ ( ( 𝐹  ‘ 𝑦  )  −ℎ   ( 𝐹  ‘ 𝑧  ) ) )  <  𝑥  ) )