Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Cauchy sequences and completeness axiom Cauchy sequences and limits seq1hcau  
				
		 
		
			
		 
		Description:   A sequence on a Hilbert space is a Cauchy sequence if it converges.
       (Contributed by NM , 16-Aug-1999)   (Revised by Mario Carneiro , 14-May-2014)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					seq1hcau    ⊢   F  :   ℕ   ⟶   ℋ    →    F  ∈  Cauchy    ↔   ∀  x  ∈    ℝ   +     ∃  y  ∈   ℕ    ∀  z  ∈   ℤ   ≥  y        norm  ℎ ⁡   F  ⁡  y   -  ℎ  F  ⁡  z    <  x                
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							hcau   ⊢   F  ∈  Cauchy    ↔    F  :   ℕ   ⟶   ℋ    ∧   ∀  x  ∈    ℝ   +     ∃  y  ∈   ℕ    ∀  z  ∈   ℤ   ≥  y        norm  ℎ ⁡   F  ⁡  y   -  ℎ  F  ⁡  z    <  x                
						
							2 
								1 
							 
							baib   ⊢   F  :   ℕ   ⟶   ℋ    →    F  ∈  Cauchy    ↔   ∀  x  ∈    ℝ   +     ∃  y  ∈   ℕ    ∀  z  ∈   ℤ   ≥  y        norm  ℎ ⁡   F  ⁡  y   -  ℎ  F  ⁡  z    <  x