Metamath Proof Explorer


Theorem sgnmnf

Description: The signum of -oo is -1. (Contributed by David A. Wheeler, 26-Jun-2016)

Ref Expression
Assertion sgnmnf ( sgn ‘ -∞ ) = - 1

Proof

Step Hyp Ref Expression
1 mnfxr -∞ ∈ ℝ*
2 mnflt0 -∞ < 0
3 sgnn ( ( -∞ ∈ ℝ* ∧ -∞ < 0 ) → ( sgn ‘ -∞ ) = - 1 )
4 1 2 3 mp2an ( sgn ‘ -∞ ) = - 1