Metamath Proof Explorer


Theorem sgnn

Description: The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnn ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = - 1 )

Proof

Step Hyp Ref Expression
1 sgnval ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) )
2 1 adantr ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) )
3 0xr 0 ∈ ℝ*
4 xrltne ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*𝐴 < 0 ) → 0 ≠ 𝐴 )
5 3 4 mp3an2 ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → 0 ≠ 𝐴 )
6 nesym ( 0 ≠ 𝐴 ↔ ¬ 𝐴 = 0 )
7 5 6 sylib ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ¬ 𝐴 = 0 )
8 7 iffalsed ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 < 0 , - 1 , 1 ) )
9 iftrue ( 𝐴 < 0 → if ( 𝐴 < 0 , - 1 , 1 ) = - 1 )
10 9 adantl ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → if ( 𝐴 < 0 , - 1 , 1 ) = - 1 )
11 2 8 10 3eqtrd ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = - 1 )