Step |
Hyp |
Ref |
Expression |
1 |
|
sgnval |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
|
xrltne |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐴 < 0 ) → 0 ≠ 𝐴 ) |
5 |
3 4
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 0 ≠ 𝐴 ) |
6 |
|
nesym |
⊢ ( 0 ≠ 𝐴 ↔ ¬ 𝐴 = 0 ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ¬ 𝐴 = 0 ) |
8 |
7
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 < 0 , - 1 , 1 ) ) |
9 |
|
iftrue |
⊢ ( 𝐴 < 0 → if ( 𝐴 < 0 , - 1 , 1 ) = - 1 ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → if ( 𝐴 < 0 , - 1 , 1 ) = - 1 ) |
11 |
2 8 10
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = - 1 ) |