| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgnval |  |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 3 |  | 0xr |  |-  0 e. RR* | 
						
							| 4 |  | xrltne |  |-  ( ( A e. RR* /\ 0 e. RR* /\ A < 0 ) -> 0 =/= A ) | 
						
							| 5 | 3 4 | mp3an2 |  |-  ( ( A e. RR* /\ A < 0 ) -> 0 =/= A ) | 
						
							| 6 |  | nesym |  |-  ( 0 =/= A <-> -. A = 0 ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ( A e. RR* /\ A < 0 ) -> -. A = 0 ) | 
						
							| 8 | 7 | iffalsed |  |-  ( ( A e. RR* /\ A < 0 ) -> if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , -u 1 , 1 ) ) | 
						
							| 9 |  | iftrue |  |-  ( A < 0 -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. RR* /\ A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) | 
						
							| 11 | 2 8 10 | 3eqtrd |  |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) |