Metamath Proof Explorer


Theorem sgnn

Description: The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnn A * A < 0 sgn A = 1

Proof

Step Hyp Ref Expression
1 sgnval A * sgn A = if A = 0 0 if A < 0 1 1
2 1 adantr A * A < 0 sgn A = if A = 0 0 if A < 0 1 1
3 0xr 0 *
4 xrltne A * 0 * A < 0 0 A
5 3 4 mp3an2 A * A < 0 0 A
6 nesym 0 A ¬ A = 0
7 5 6 sylib A * A < 0 ¬ A = 0
8 7 iffalsed A * A < 0 if A = 0 0 if A < 0 1 1 = if A < 0 1 1
9 iftrue A < 0 if A < 0 1 1 = 1
10 9 adantl A * A < 0 if A < 0 1 1 = 1
11 2 8 10 3eqtrd A * A < 0 sgn A = 1