Metamath Proof Explorer


Theorem sgnval

Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnval A * sgn A = if A = 0 0 if A < 0 1 1

Proof

Step Hyp Ref Expression
1 eqeq1 x = A x = 0 A = 0
2 breq1 x = A x < 0 A < 0
3 2 ifbid x = A if x < 0 1 1 = if A < 0 1 1
4 1 3 ifbieq2d x = A if x = 0 0 if x < 0 1 1 = if A = 0 0 if A < 0 1 1
5 df-sgn sgn = x * if x = 0 0 if x < 0 1 1
6 c0ex 0 V
7 negex 1 V
8 1ex 1 V
9 7 8 ifex if A < 0 1 1 V
10 6 9 ifex if A = 0 0 if A < 0 1 1 V
11 4 5 10 fvmpt A * sgn A = if A = 0 0 if A < 0 1 1