Metamath Proof Explorer


Theorem sgnval

Description: Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnval A*sgnA=ifA=00ifA<011

Proof

Step Hyp Ref Expression
1 eqeq1 x=Ax=0A=0
2 breq1 x=Ax<0A<0
3 2 ifbid x=Aifx<011=ifA<011
4 1 3 ifbieq2d x=Aifx=00ifx<011=ifA=00ifA<011
5 df-sgn sgn=x*ifx=00ifx<011
6 c0ex 0V
7 negex 1V
8 1ex 1V
9 7 8 ifex ifA<011V
10 6 9 ifex ifA=00ifA<011V
11 4 5 10 fvmpt A*sgnA=ifA=00ifA<011