Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Signum (sgn or sign) function
sgnval
Next ⟩
sgn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
sgnval
Description:
Value of the signum function.
(Contributed by
David A. Wheeler
, 15-May-2015)
Ref
Expression
Assertion
sgnval
⊢
A
∈
ℝ
*
→
sgn
⁡
A
=
if
A
=
0
0
if
A
<
0
−
1
1
Proof
Step
Hyp
Ref
Expression
1
eqeq1
⊢
x
=
A
→
x
=
0
↔
A
=
0
2
breq1
⊢
x
=
A
→
x
<
0
↔
A
<
0
3
2
ifbid
⊢
x
=
A
→
if
x
<
0
−
1
1
=
if
A
<
0
−
1
1
4
1
3
ifbieq2d
⊢
x
=
A
→
if
x
=
0
0
if
x
<
0
−
1
1
=
if
A
=
0
0
if
A
<
0
−
1
1
5
df-sgn
⊢
sgn
=
x
∈
ℝ
*
⟼
if
x
=
0
0
if
x
<
0
−
1
1
6
c0ex
⊢
0
∈
V
7
negex
⊢
−
1
∈
V
8
1ex
⊢
1
∈
V
9
7
8
ifex
⊢
if
A
<
0
−
1
1
∈
V
10
6
9
ifex
⊢
if
A
=
0
0
if
A
<
0
−
1
1
∈
V
11
4
5
10
fvmpt
⊢
A
∈
ℝ
*
→
sgn
⁡
A
=
if
A
=
0
0
if
A
<
0
−
1
1