Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 < 0 ↔ 𝐴 < 0 ) ) |
3 |
2
|
ifbid |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 < 0 , - 1 , 1 ) = if ( 𝐴 < 0 , - 1 , 1 ) ) |
4 |
1 3
|
ifbieq2d |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 0 , 0 , if ( 𝑥 < 0 , - 1 , 1 ) ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
5 |
|
df-sgn |
⊢ sgn = ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 = 0 , 0 , if ( 𝑥 < 0 , - 1 , 1 ) ) ) |
6 |
|
c0ex |
⊢ 0 ∈ V |
7 |
|
negex |
⊢ - 1 ∈ V |
8 |
|
1ex |
⊢ 1 ∈ V |
9 |
7 8
|
ifex |
⊢ if ( 𝐴 < 0 , - 1 , 1 ) ∈ V |
10 |
6 9
|
ifex |
⊢ if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ∈ V |
11 |
4 5 10
|
fvmpt |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |