| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  0  ↔  𝐴  =  0 ) ) | 
						
							| 2 |  | breq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  <  0  ↔  𝐴  <  0 ) ) | 
						
							| 3 | 2 | ifbid | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) | 
						
							| 4 | 1 3 | ifbieq2d | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  =  0 ,  0 ,  if ( 𝑥  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 5 |  | df-sgn | ⊢ sgn  =  ( 𝑥  ∈  ℝ*  ↦  if ( 𝑥  =  0 ,  0 ,  if ( 𝑥  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 6 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 7 |  | negex | ⊢ - 1  ∈  V | 
						
							| 8 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 9 | 7 8 | ifex | ⊢ if ( 𝐴  <  0 ,  - 1 ,  1 )  ∈  V | 
						
							| 10 | 6 9 | ifex | ⊢ if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  ∈  V | 
						
							| 11 | 4 5 10 | fvmpt | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) |