Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sgn0 | ⊢ ( sgn ‘ 0 ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | ⊢ 0 ∈ ℝ* | |
2 | sgnval | ⊢ ( 0 ∈ ℝ* → ( sgn ‘ 0 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , - 1 , 1 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( sgn ‘ 0 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , - 1 , 1 ) ) |
4 | eqid | ⊢ 0 = 0 | |
5 | 4 | iftruei | ⊢ if ( 0 = 0 , 0 , if ( 0 < 0 , - 1 , 1 ) ) = 0 |
6 | 3 5 | eqtri | ⊢ ( sgn ‘ 0 ) = 0 |