Metamath Proof Explorer


Theorem sgn0

Description: The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgn0 ( sgn ‘ 0 ) = 0

Proof

Step Hyp Ref Expression
1 0xr 0 ∈ ℝ*
2 sgnval ( 0 ∈ ℝ* → ( sgn ‘ 0 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , - 1 , 1 ) ) )
3 1 2 ax-mp ( sgn ‘ 0 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , - 1 , 1 ) )
4 eqid 0 = 0
5 4 iftruei if ( 0 = 0 , 0 , if ( 0 < 0 , - 1 , 1 ) ) = 0
6 3 5 eqtri ( sgn ‘ 0 ) = 0