Metamath Proof Explorer


Theorem sgnp

Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnp ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 )

Proof

Step Hyp Ref Expression
1 sgnval ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) )
2 1 adantr ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) )
3 0xr 0 ∈ ℝ*
4 xrltne ( ( 0 ∈ ℝ*𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
5 3 4 mp3an1 ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
6 5 neneqd ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 𝐴 = 0 )
7 6 iffalsed ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 < 0 , - 1 , 1 ) )
8 xrltnsym ( ( 0 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) )
9 3 8 mpan ( 𝐴 ∈ ℝ* → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) )
10 9 imp ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 𝐴 < 0 )
11 10 iffalsed ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → if ( 𝐴 < 0 , - 1 , 1 ) = 1 )
12 2 7 11 3eqtrd ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 )