Step |
Hyp |
Ref |
Expression |
1 |
|
sgnval |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
|
xrltne |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
5 |
3 4
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
6 |
5
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 𝐴 = 0 ) |
7 |
6
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 < 0 , - 1 , 1 ) ) |
8 |
|
xrltnsym |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) ) |
9 |
3 8
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 𝐴 < 0 ) |
11 |
10
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → if ( 𝐴 < 0 , - 1 , 1 ) = 1 ) |
12 |
2 7 11
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 ) |