| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgnval | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 3 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 4 |  | xrltne | ⊢ ( ( 0  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 5 | 3 4 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 6 | 5 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ¬  𝐴  =  0 ) | 
						
							| 7 | 6 | iffalsed | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) | 
						
							| 8 |  | xrltnsym | ⊢ ( ( 0  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 0  <  𝐴  →  ¬  𝐴  <  0 ) ) | 
						
							| 9 | 3 8 | mpan | ⊢ ( 𝐴  ∈  ℝ*  →  ( 0  <  𝐴  →  ¬  𝐴  <  0 ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ¬  𝐴  <  0 ) | 
						
							| 11 | 10 | iffalsed | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  1 ) | 
						
							| 12 | 2 7 11 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( sgn ‘ 𝐴 )  =  1 ) |