Metamath Proof Explorer


Theorem sgnp

Description: The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015)

Ref Expression
Assertion sgnp A * 0 < A sgn A = 1

Proof

Step Hyp Ref Expression
1 sgnval A * sgn A = if A = 0 0 if A < 0 1 1
2 1 adantr A * 0 < A sgn A = if A = 0 0 if A < 0 1 1
3 0xr 0 *
4 xrltne 0 * A * 0 < A A 0
5 3 4 mp3an1 A * 0 < A A 0
6 5 neneqd A * 0 < A ¬ A = 0
7 6 iffalsed A * 0 < A if A = 0 0 if A < 0 1 1 = if A < 0 1 1
8 xrltnsym 0 * A * 0 < A ¬ A < 0
9 3 8 mpan A * 0 < A ¬ A < 0
10 9 imp A * 0 < A ¬ A < 0
11 10 iffalsed A * 0 < A if A < 0 1 1 = 1
12 2 7 11 3eqtrd A * 0 < A sgn A = 1