Step |
Hyp |
Ref |
Expression |
1 |
|
sgnval |
|- ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
2 |
1
|
adantr |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
3 |
|
0xr |
|- 0 e. RR* |
4 |
|
xrltne |
|- ( ( 0 e. RR* /\ A e. RR* /\ 0 < A ) -> A =/= 0 ) |
5 |
3 4
|
mp3an1 |
|- ( ( A e. RR* /\ 0 < A ) -> A =/= 0 ) |
6 |
5
|
neneqd |
|- ( ( A e. RR* /\ 0 < A ) -> -. A = 0 ) |
7 |
6
|
iffalsed |
|- ( ( A e. RR* /\ 0 < A ) -> if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , -u 1 , 1 ) ) |
8 |
|
xrltnsym |
|- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 < A -> -. A < 0 ) ) |
9 |
3 8
|
mpan |
|- ( A e. RR* -> ( 0 < A -> -. A < 0 ) ) |
10 |
9
|
imp |
|- ( ( A e. RR* /\ 0 < A ) -> -. A < 0 ) |
11 |
10
|
iffalsed |
|- ( ( A e. RR* /\ 0 < A ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) |
12 |
2 7 11
|
3eqtrd |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = 1 ) |