| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgnval |  |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 3 |  | 0xr |  |-  0 e. RR* | 
						
							| 4 |  | xrltne |  |-  ( ( 0 e. RR* /\ A e. RR* /\ 0 < A ) -> A =/= 0 ) | 
						
							| 5 | 3 4 | mp3an1 |  |-  ( ( A e. RR* /\ 0 < A ) -> A =/= 0 ) | 
						
							| 6 | 5 | neneqd |  |-  ( ( A e. RR* /\ 0 < A ) -> -. A = 0 ) | 
						
							| 7 | 6 | iffalsed |  |-  ( ( A e. RR* /\ 0 < A ) -> if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , -u 1 , 1 ) ) | 
						
							| 8 |  | xrltnsym |  |-  ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 < A -> -. A < 0 ) ) | 
						
							| 9 | 3 8 | mpan |  |-  ( A e. RR* -> ( 0 < A -> -. A < 0 ) ) | 
						
							| 10 | 9 | imp |  |-  ( ( A e. RR* /\ 0 < A ) -> -. A < 0 ) | 
						
							| 11 | 10 | iffalsed |  |-  ( ( A e. RR* /\ 0 < A ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) | 
						
							| 12 | 2 7 11 | 3eqtrd |  |-  ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = 1 ) |