| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( x = A -> ( x = 0 <-> A = 0 ) ) |
| 2 |
|
breq1 |
|- ( x = A -> ( x < 0 <-> A < 0 ) ) |
| 3 |
2
|
ifbid |
|- ( x = A -> if ( x < 0 , -u 1 , 1 ) = if ( A < 0 , -u 1 , 1 ) ) |
| 4 |
1 3
|
ifbieq2d |
|- ( x = A -> if ( x = 0 , 0 , if ( x < 0 , -u 1 , 1 ) ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
| 5 |
|
df-sgn |
|- sgn = ( x e. RR* |-> if ( x = 0 , 0 , if ( x < 0 , -u 1 , 1 ) ) ) |
| 6 |
|
c0ex |
|- 0 e. _V |
| 7 |
|
negex |
|- -u 1 e. _V |
| 8 |
|
1ex |
|- 1 e. _V |
| 9 |
7 8
|
ifex |
|- if ( A < 0 , -u 1 , 1 ) e. _V |
| 10 |
6 9
|
ifex |
|- if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) e. _V |
| 11 |
4 5 10
|
fvmpt |
|- ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |