| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( x = A -> ( x = 0 <-> A = 0 ) ) | 
						
							| 2 |  | breq1 |  |-  ( x = A -> ( x < 0 <-> A < 0 ) ) | 
						
							| 3 | 2 | ifbid |  |-  ( x = A -> if ( x < 0 , -u 1 , 1 ) = if ( A < 0 , -u 1 , 1 ) ) | 
						
							| 4 | 1 3 | ifbieq2d |  |-  ( x = A -> if ( x = 0 , 0 , if ( x < 0 , -u 1 , 1 ) ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 5 |  | df-sgn |  |-  sgn = ( x e. RR* |-> if ( x = 0 , 0 , if ( x < 0 , -u 1 , 1 ) ) ) | 
						
							| 6 |  | c0ex |  |-  0 e. _V | 
						
							| 7 |  | negex |  |-  -u 1 e. _V | 
						
							| 8 |  | 1ex |  |-  1 e. _V | 
						
							| 9 | 7 8 | ifex |  |-  if ( A < 0 , -u 1 , 1 ) e. _V | 
						
							| 10 | 6 9 | ifex |  |-  if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) e. _V | 
						
							| 11 | 4 5 10 | fvmpt |  |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |