| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 2 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
| 3 |
|
ltnsym |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 4 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 5 |
|
pnfnlt |
⊢ ( 𝐴 ∈ ℝ* → ¬ +∞ < 𝐴 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℝ → ¬ +∞ < 𝐴 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ +∞ < 𝐴 ) |
| 8 |
|
breq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 < 𝐴 ↔ +∞ < 𝐴 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐴 ↔ +∞ < 𝐴 ) ) |
| 10 |
7 9
|
mtbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐴 ) |
| 11 |
10
|
a1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 12 |
|
nltmnf |
⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
| 13 |
4 12
|
syl |
⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
| 15 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 17 |
14 16
|
mtbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
| 18 |
17
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 19 |
3 11 18
|
3jaodan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 20 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
| 22 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 24 |
21 23
|
mtbird |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐴 < 𝐵 ) |
| 25 |
24
|
pm2.21d |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 26 |
2 25
|
sylan2br |
⊢ ( ( 𝐴 = +∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 27 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
| 28 |
|
nltmnf |
⊢ ( 𝐵 ∈ ℝ* → ¬ 𝐵 < -∞ ) |
| 29 |
27 28
|
syl |
⊢ ( 𝐵 ∈ ℝ → ¬ 𝐵 < -∞ ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ¬ 𝐵 < -∞ ) |
| 31 |
|
breq2 |
⊢ ( 𝐴 = -∞ → ( 𝐵 < 𝐴 ↔ 𝐵 < -∞ ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ 𝐵 < -∞ ) ) |
| 33 |
30 32
|
mtbird |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ¬ 𝐵 < 𝐴 ) |
| 34 |
33
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 35 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 36 |
|
pnfnlt |
⊢ ( -∞ ∈ ℝ* → ¬ +∞ < -∞ ) |
| 37 |
35 36
|
ax-mp |
⊢ ¬ +∞ < -∞ |
| 38 |
|
breq12 |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 = -∞ ) → ( 𝐵 < 𝐴 ↔ +∞ < -∞ ) ) |
| 39 |
37 38
|
mtbiri |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 = -∞ ) → ¬ 𝐵 < 𝐴 ) |
| 40 |
39
|
ancoms |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐴 ) |
| 41 |
40
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 42 |
|
xrltnr |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
| 43 |
35 42
|
ax-mp |
⊢ ¬ -∞ < -∞ |
| 44 |
|
breq12 |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ -∞ < -∞ ) ) |
| 45 |
43 44
|
mtbiri |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
| 46 |
45
|
pm2.21d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 47 |
34 41 46
|
3jaodan |
⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 48 |
19 26 47
|
3jaoian |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 49 |
1 2 48
|
syl2anb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |