Metamath Proof Explorer


Theorem sgnrrp

Description: The signum of a positive real is 1. (Contributed by David A. Wheeler, 18-May-2015)

Ref Expression
Assertion sgnrrp ( 𝐴 ∈ ℝ+ → ( sgn ‘ 𝐴 ) = 1 )

Proof

Step Hyp Ref Expression
1 rpxr ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ* )
2 rpgt0 ( 𝐴 ∈ ℝ+ → 0 < 𝐴 )
3 sgnp ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 )
4 1 2 3 syl2anc ( 𝐴 ∈ ℝ+ → ( sgn ‘ 𝐴 ) = 1 )