| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shmod.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | shmod.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | shmod.3 | ⊢ 𝐶  ∈   Sℋ | 
						
							| 4 | 1 2 3 | shmodsi | ⊢ ( 𝐴  ⊆  𝐶  →  ( ( 𝐴  +ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 5 |  | ineq1 | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  ( ( 𝐴  +ℋ  𝐵 )  ∩  𝐶 )  =  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  𝐶 ) ) | 
						
							| 6 | 5 | sseq1d | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  ( ( ( 𝐴  +ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) )  ↔  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 7 | 4 6 | imbitrid | ⊢ ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  →  ( 𝐴  ⊆  𝐶  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝐴  ⊆  𝐶 )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 9 | 2 3 | shincli | ⊢ ( 𝐵  ∩  𝐶 )  ∈   Sℋ | 
						
							| 10 | 1 9 | shsleji | ⊢ ( 𝐴  +ℋ  ( 𝐵  ∩  𝐶 ) )  ⊆  ( 𝐴  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) | 
						
							| 11 | 8 10 | sstrdi | ⊢ ( ( ( 𝐴  +ℋ  𝐵 )  =  ( 𝐴  ∨ℋ  𝐵 )  ∧  𝐴  ⊆  𝐶 )  →  ( ( 𝐴  ∨ℋ  𝐵 )  ∩  𝐶 )  ⊆  ( 𝐴  ∨ℋ  ( 𝐵  ∩  𝐶 ) ) ) |