Metamath Proof Explorer


Theorem shmodi

Description: The modular law is implied by the closure of subspace sum. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shmod.1 𝐴S
shmod.2 𝐵S
shmod.3 𝐶S
Assertion shmodi ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ 𝐴𝐶 ) → ( ( 𝐴 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 ( 𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 shmod.1 𝐴S
2 shmod.2 𝐵S
3 shmod.3 𝐶S
4 1 2 3 shmodsi ( 𝐴𝐶 → ( ( 𝐴 + 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 + ( 𝐵𝐶 ) ) )
5 ineq1 ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( ( 𝐴 + 𝐵 ) ∩ 𝐶 ) = ( ( 𝐴 𝐵 ) ∩ 𝐶 ) )
6 5 sseq1d ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 + ( 𝐵𝐶 ) ) ↔ ( ( 𝐴 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 + ( 𝐵𝐶 ) ) ) )
7 4 6 syl5ib ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) → ( 𝐴𝐶 → ( ( 𝐴 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 + ( 𝐵𝐶 ) ) ) )
8 7 imp ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ 𝐴𝐶 ) → ( ( 𝐴 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 + ( 𝐵𝐶 ) ) )
9 2 3 shincli ( 𝐵𝐶 ) ∈ S
10 1 9 shsleji ( 𝐴 + ( 𝐵𝐶 ) ) ⊆ ( 𝐴 ( 𝐵𝐶 ) )
11 8 10 sstrdi ( ( ( 𝐴 + 𝐵 ) = ( 𝐴 𝐵 ) ∧ 𝐴𝐶 ) → ( ( 𝐴 𝐵 ) ∩ 𝐶 ) ⊆ ( 𝐴 ( 𝐵𝐶 ) ) )