Metamath Proof Explorer


Theorem sigarms

Description: Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) )
Assertion sigarms ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) − ( 𝐴 𝐺 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sigar 𝐺 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( ℑ ‘ ( ( ∗ ‘ 𝑥 ) · 𝑦 ) ) )
2 simp1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ )
3 simp2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ )
4 simp3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ )
5 3 4 subcld ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵𝐶 ) ∈ ℂ )
6 1 sigarac ( ( 𝐴 ∈ ℂ ∧ ( 𝐵𝐶 ) ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵𝐶 ) ) = - ( ( 𝐵𝐶 ) 𝐺 𝐴 ) )
7 2 5 6 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵𝐶 ) ) = - ( ( 𝐵𝐶 ) 𝐺 𝐴 ) )
8 1 sigarmf ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵𝐶 ) 𝐺 𝐴 ) = ( ( 𝐵 𝐺 𝐴 ) − ( 𝐶 𝐺 𝐴 ) ) )
9 8 negeqd ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵𝐶 ) 𝐺 𝐴 ) = - ( ( 𝐵 𝐺 𝐴 ) − ( 𝐶 𝐺 𝐴 ) ) )
10 9 3com12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵𝐶 ) 𝐺 𝐴 ) = - ( ( 𝐵 𝐺 𝐴 ) − ( 𝐶 𝐺 𝐴 ) ) )
11 3simpa ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) )
12 11 ancomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) )
13 1 sigarim ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℝ )
14 12 13 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℝ )
15 14 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℂ )
16 3simpb ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) )
17 16 ancomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) )
18 1 sigarim ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℝ )
19 17 18 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℝ )
20 19 recnd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℂ )
21 negsubdi ( ( ( 𝐵 𝐺 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) → - ( ( 𝐵 𝐺 𝐴 ) − ( 𝐶 𝐺 𝐴 ) ) = ( - ( 𝐵 𝐺 𝐴 ) + ( 𝐶 𝐺 𝐴 ) ) )
22 simpl ( ( ( 𝐵 𝐺 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) → ( 𝐵 𝐺 𝐴 ) ∈ ℂ )
23 22 negcld ( ( ( 𝐵 𝐺 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) → - ( 𝐵 𝐺 𝐴 ) ∈ ℂ )
24 simpr ( ( ( 𝐵 𝐺 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) → ( 𝐶 𝐺 𝐴 ) ∈ ℂ )
25 23 24 subnegd ( ( ( 𝐵 𝐺 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) → ( - ( 𝐵 𝐺 𝐴 ) − - ( 𝐶 𝐺 𝐴 ) ) = ( - ( 𝐵 𝐺 𝐴 ) + ( 𝐶 𝐺 𝐴 ) ) )
26 21 25 eqtr4d ( ( ( 𝐵 𝐺 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝐺 𝐴 ) ∈ ℂ ) → - ( ( 𝐵 𝐺 𝐴 ) − ( 𝐶 𝐺 𝐴 ) ) = ( - ( 𝐵 𝐺 𝐴 ) − - ( 𝐶 𝐺 𝐴 ) ) )
27 15 20 26 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵 𝐺 𝐴 ) − ( 𝐶 𝐺 𝐴 ) ) = ( - ( 𝐵 𝐺 𝐴 ) − - ( 𝐶 𝐺 𝐴 ) ) )
28 10 27 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( ( 𝐵𝐶 ) 𝐺 𝐴 ) = ( - ( 𝐵 𝐺 𝐴 ) − - ( 𝐶 𝐺 𝐴 ) ) )
29 1 sigarac ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) )
30 2 3 29 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐵 ) = - ( 𝐵 𝐺 𝐴 ) )
31 30 eqcomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( 𝐵 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐵 ) )
32 1 sigarac ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) = - ( 𝐶 𝐺 𝐴 ) )
33 2 4 32 syl2anc ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 𝐶 ) = - ( 𝐶 𝐺 𝐴 ) )
34 33 eqcomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → - ( 𝐶 𝐺 𝐴 ) = ( 𝐴 𝐺 𝐶 ) )
35 31 34 oveq12d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( - ( 𝐵 𝐺 𝐴 ) − - ( 𝐶 𝐺 𝐴 ) ) = ( ( 𝐴 𝐺 𝐵 ) − ( 𝐴 𝐺 𝐶 ) ) )
36 7 28 35 3eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 𝐺 ( 𝐵𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) − ( 𝐴 𝐺 𝐶 ) ) )