Metamath Proof Explorer


Theorem signswbase

Description: The base of W is the unordered triple reprensenting the possible signs. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
Assertion signswbase { - 1 , 0 , 1 } = ( Base ‘ 𝑊 )

Proof

Step Hyp Ref Expression
1 signsw.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
3 tpex âŠĒ { - 1 , 0 , 1 } ∈ V
4 2 grpbase âŠĒ ( { - 1 , 0 , 1 } ∈ V → { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) )
5 3 4 ax-mp âŠĒ { - 1 , 0 , 1 } = ( Base ‘ 𝑊 )