Metamath Proof Explorer


Theorem signswbase

Description: The base of W is the unordered triple reprensenting the possible signs. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
Assertion signswbase { - 1 , 0 , 1 } = ( Base ‘ 𝑊 )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 tpex { - 1 , 0 , 1 } ∈ V
4 2 grpbase ( { - 1 , 0 , 1 } ∈ V → { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) )
5 3 4 ax-mp { - 1 , 0 , 1 } = ( Base ‘ 𝑊 )