Metamath Proof Explorer


Theorem signswbase

Description: The base of W is the unordered triple reprensenting the possible signs. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
signsw.w
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. }
Assertion signswbase
|- { -u 1 , 0 , 1 } = ( Base ` W )

Proof

Step Hyp Ref Expression
1 signsw.p
 |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
2 signsw.w
 |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. }
3 tpex
 |-  { -u 1 , 0 , 1 } e. _V
4 2 grpbase
 |-  ( { -u 1 , 0 , 1 } e. _V -> { -u 1 , 0 , 1 } = ( Base ` W ) )
5 3 4 ax-mp
 |-  { -u 1 , 0 , 1 } = ( Base ` W )