Description: The operation of W . (Contributed by Thierry Arnoux, 9-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | signsw.p | |- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
|
signsw.w | |- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
||
Assertion | signswplusg | |- .+^ = ( +g ` W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsw.p | |- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
|
2 | signsw.w | |- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
|
3 | tpex | |- { -u 1 , 0 , 1 } e. _V |
|
4 | 3 3 | mpoex | |- ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) e. _V |
5 | 1 4 | eqeltri | |- .+^ e. _V |
6 | 2 | grpplusg | |- ( .+^ e. _V -> .+^ = ( +g ` W ) ) |
7 | 5 6 | ax-mp | |- .+^ = ( +g ` W ) |