Metamath Proof Explorer


Theorem signswplusg

Description: The operation of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
signsw.w
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. }
Assertion signswplusg
|- .+^ = ( +g ` W )

Proof

Step Hyp Ref Expression
1 signsw.p
 |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
2 signsw.w
 |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. }
3 tpex
 |-  { -u 1 , 0 , 1 } e. _V
4 3 3 mpoex
 |-  ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) e. _V
5 1 4 eqeltri
 |-  .+^ e. _V
6 2 grpplusg
 |-  ( .+^ e. _V -> .+^ = ( +g ` W ) )
7 5 6 ax-mp
 |-  .+^ = ( +g ` W )