Metamath Proof Explorer


Theorem signsw0g

Description: The neutral element of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
signsw.w
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. }
Assertion signsw0g
|- 0 = ( 0g ` W )

Proof

Step Hyp Ref Expression
1 signsw.p
 |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) )
2 signsw.w
 |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. }
3 c0ex
 |-  0 e. _V
4 3 tpid2
 |-  0 e. { -u 1 , 0 , 1 }
5 1 signsw0glem
 |-  A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u )
6 4 5 pm3.2i
 |-  ( 0 e. { -u 1 , 0 , 1 } /\ A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u ) )
7 1 2 signswbase
 |-  { -u 1 , 0 , 1 } = ( Base ` W )
8 eqid
 |-  ( 0g ` W ) = ( 0g ` W )
9 1 2 signswplusg
 |-  .+^ = ( +g ` W )
10 oveq1
 |-  ( e = 0 -> ( e .+^ u ) = ( 0 .+^ u ) )
11 10 eqeq1d
 |-  ( e = 0 -> ( ( e .+^ u ) = u <-> ( 0 .+^ u ) = u ) )
12 11 ovanraleqv
 |-  ( e = 0 -> ( A. u e. { -u 1 , 0 , 1 } ( ( e .+^ u ) = u /\ ( u .+^ e ) = u ) <-> A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u ) ) )
13 12 rspcev
 |-  ( ( 0 e. { -u 1 , 0 , 1 } /\ A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u ) ) -> E. e e. { -u 1 , 0 , 1 } A. u e. { -u 1 , 0 , 1 } ( ( e .+^ u ) = u /\ ( u .+^ e ) = u ) )
14 4 5 13 mp2an
 |-  E. e e. { -u 1 , 0 , 1 } A. u e. { -u 1 , 0 , 1 } ( ( e .+^ u ) = u /\ ( u .+^ e ) = u )
15 14 a1i
 |-  ( T. -> E. e e. { -u 1 , 0 , 1 } A. u e. { -u 1 , 0 , 1 } ( ( e .+^ u ) = u /\ ( u .+^ e ) = u ) )
16 7 8 9 15 ismgmid
 |-  ( T. -> ( ( 0 e. { -u 1 , 0 , 1 } /\ A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u ) ) <-> ( 0g ` W ) = 0 ) )
17 16 mptru
 |-  ( ( 0 e. { -u 1 , 0 , 1 } /\ A. u e. { -u 1 , 0 , 1 } ( ( 0 .+^ u ) = u /\ ( u .+^ 0 ) = u ) ) <-> ( 0g ` W ) = 0 )
18 6 17 mpbi
 |-  ( 0g ` W ) = 0
19 18 eqcomi
 |-  0 = ( 0g ` W )