| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsw.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 4 | 3 | tpid2 | ⊢ 0  ∈  { - 1 ,  0 ,  1 } | 
						
							| 5 | 1 | signsw0glem | ⊢ ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) | 
						
							| 6 | 4 5 | pm3.2i | ⊢ ( 0  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) ) | 
						
							| 7 | 1 2 | signswbase | ⊢ { - 1 ,  0 ,  1 }  =  ( Base ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 9 | 1 2 | signswplusg | ⊢  ⨣   =  ( +g ‘ 𝑊 ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑒  =  0  →  ( 𝑒  ⨣  𝑢 )  =  ( 0  ⨣  𝑢 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑒  =  0  →  ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ↔  ( 0  ⨣  𝑢 )  =  𝑢 ) ) | 
						
							| 12 | 11 | ovanraleqv | ⊢ ( 𝑒  =  0  →  ( ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 )  ↔  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) ) ) | 
						
							| 13 | 12 | rspcev | ⊢ ( ( 0  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) )  →  ∃ 𝑒  ∈  { - 1 ,  0 ,  1 } ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 ) ) | 
						
							| 14 | 4 5 13 | mp2an | ⊢ ∃ 𝑒  ∈  { - 1 ,  0 ,  1 } ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 ) | 
						
							| 15 | 14 | a1i | ⊢ ( ⊤  →  ∃ 𝑒  ∈  { - 1 ,  0 ,  1 } ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 ) ) | 
						
							| 16 | 7 8 9 15 | ismgmid | ⊢ ( ⊤  →  ( ( 0  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) )  ↔  ( 0g ‘ 𝑊 )  =  0 ) ) | 
						
							| 17 | 16 | mptru | ⊢ ( ( 0  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) )  ↔  ( 0g ‘ 𝑊 )  =  0 ) | 
						
							| 18 | 6 17 | mpbi | ⊢ ( 0g ‘ 𝑊 )  =  0 | 
						
							| 19 | 18 | eqcomi | ⊢ 0  =  ( 0g ‘ 𝑊 ) |