Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsw.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
c0ex |
⊢ 0 ∈ V |
4 |
3
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
5 |
1
|
signsw0glem |
⊢ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) |
6 |
4 5
|
pm3.2i |
⊢ ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) |
7 |
1 2
|
signswbase |
⊢ { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
9 |
1 2
|
signswplusg |
⊢ ⨣ = ( +g ‘ 𝑊 ) |
10 |
|
oveq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 ⨣ 𝑢 ) = ( 0 ⨣ 𝑢 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑒 = 0 → ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ↔ ( 0 ⨣ 𝑢 ) = 𝑢 ) ) |
12 |
11
|
ovanraleqv |
⊢ ( 𝑒 = 0 → ( ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ↔ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) ) |
13 |
12
|
rspcev |
⊢ ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) → ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ) |
14 |
4 5 13
|
mp2an |
⊢ ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) |
15 |
14
|
a1i |
⊢ ( ⊤ → ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ) |
16 |
7 8 9 15
|
ismgmid |
⊢ ( ⊤ → ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) ↔ ( 0g ‘ 𝑊 ) = 0 ) ) |
17 |
16
|
mptru |
⊢ ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) ↔ ( 0g ‘ 𝑊 ) = 0 ) |
18 |
6 17
|
mpbi |
⊢ ( 0g ‘ 𝑊 ) = 0 |
19 |
18
|
eqcomi |
⊢ 0 = ( 0g ‘ 𝑊 ) |