Metamath Proof Explorer


Theorem signsw0g

Description: The neutral element of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
Assertion signsw0g 0 = ( 0g𝑊 )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 c0ex 0 ∈ V
4 3 tpid2 0 ∈ { - 1 , 0 , 1 }
5 1 signsw0glem 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 )
6 4 5 pm3.2i ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 ) )
7 1 2 signswbase { - 1 , 0 , 1 } = ( Base ‘ 𝑊 )
8 eqid ( 0g𝑊 ) = ( 0g𝑊 )
9 1 2 signswplusg = ( +g𝑊 )
10 oveq1 ( 𝑒 = 0 → ( 𝑒 𝑢 ) = ( 0 𝑢 ) )
11 10 eqeq1d ( 𝑒 = 0 → ( ( 𝑒 𝑢 ) = 𝑢 ↔ ( 0 𝑢 ) = 𝑢 ) )
12 11 ovanraleqv ( 𝑒 = 0 → ( ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 𝑢 ) = 𝑢 ∧ ( 𝑢 𝑒 ) = 𝑢 ) ↔ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 ) ) )
13 12 rspcev ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 ) ) → ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 𝑢 ) = 𝑢 ∧ ( 𝑢 𝑒 ) = 𝑢 ) )
14 4 5 13 mp2an 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 𝑢 ) = 𝑢 ∧ ( 𝑢 𝑒 ) = 𝑢 )
15 14 a1i ( ⊤ → ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 𝑢 ) = 𝑢 ∧ ( 𝑢 𝑒 ) = 𝑢 ) )
16 7 8 9 15 ismgmid ( ⊤ → ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 ) ) ↔ ( 0g𝑊 ) = 0 ) )
17 16 mptru ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 𝑢 ) = 𝑢 ∧ ( 𝑢 0 ) = 𝑢 ) ) ↔ ( 0g𝑊 ) = 0 )
18 6 17 mpbi ( 0g𝑊 ) = 0
19 18 eqcomi 0 = ( 0g𝑊 )