| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsw.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 | 1 | signspval | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑢  ⨣  𝑣 )  =  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 ) ) | 
						
							| 4 |  | ifcl | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 } )  →  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 5 | 3 4 | eqeltrd | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑢  ⨣  𝑣 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 6 | 1 | signspval | ⊢ ( ( ( 𝑢  ⨣  𝑣 )  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  if ( 𝑤  =  0 ,  ( 𝑢  ⨣  𝑣 ) ,  𝑤 ) ) | 
						
							| 7 | 5 6 | stoic3 | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  if ( 𝑤  =  0 ,  ( 𝑢  ⨣  𝑣 ) ,  𝑤 ) ) | 
						
							| 8 |  | iftrue | ⊢ ( 𝑤  =  0  →  if ( 𝑤  =  0 ,  ( 𝑢  ⨣  𝑣 ) ,  𝑤 )  =  ( 𝑢  ⨣  𝑣 ) ) | 
						
							| 9 | 7 8 | sylan9eq | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  𝑣 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  𝑣 ) ) | 
						
							| 11 | 3 | 3adant3 | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑢  ⨣  𝑣 )  =  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 ) ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( 𝑢  ⨣  𝑣 )  =  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 ) ) | 
						
							| 13 |  | iftrue | ⊢ ( 𝑣  =  0  →  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 )  =  𝑢 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 )  =  𝑢 ) | 
						
							| 15 | 10 12 14 | 3eqtrd | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  𝑢 ) | 
						
							| 16 |  | simp1 | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  𝑢  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 17 | 1 | signspval | ⊢ ( ( 𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑣  ⨣  𝑤 )  =  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 ) ) | 
						
							| 18 | 17 | 3adant1 | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑣  ⨣  𝑤 )  =  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 ) ) | 
						
							| 19 |  | simpl2 | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  →  𝑣  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 20 |  | simpl3 | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  𝑤  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 21 | 19 20 | ifclda | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 22 | 18 21 | eqeltrd | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑣  ⨣  𝑤 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 23 | 1 | signspval | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  ( 𝑣  ⨣  𝑤 )  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 24 | 16 22 23 | syl2anc | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 26 |  | iftrue | ⊢ ( 𝑤  =  0  →  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 )  =  𝑣 ) | 
						
							| 27 | 18 26 | sylan9eq | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  →  ( 𝑣  ⨣  𝑤 )  =  𝑣 ) | 
						
							| 28 |  | id | ⊢ ( 𝑣  =  0  →  𝑣  =  0 ) | 
						
							| 29 | 27 28 | sylan9eq | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( 𝑣  ⨣  𝑤 )  =  0 ) | 
						
							| 30 | 29 | iftrued | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) )  =  𝑢 ) | 
						
							| 31 | 25 30 | eqtrd | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  𝑢 ) | 
						
							| 32 | 15 31 | eqtr4d | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  𝑣  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 33 | 7 | ad2antrr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  if ( 𝑤  =  0 ,  ( 𝑢  ⨣  𝑣 ) ,  𝑤 ) ) | 
						
							| 34 | 8 | ad2antlr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  if ( 𝑤  =  0 ,  ( 𝑢  ⨣  𝑣 ) ,  𝑤 )  =  ( 𝑢  ⨣  𝑣 ) ) | 
						
							| 35 | 11 | ad2antrr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( 𝑢  ⨣  𝑣 )  =  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 ) ) | 
						
							| 36 |  | iffalse | ⊢ ( ¬  𝑣  =  0  →  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 )  =  𝑣 ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  if ( 𝑣  =  0 ,  𝑢 ,  𝑣 )  =  𝑣 ) | 
						
							| 38 | 35 37 | eqtrd | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( 𝑢  ⨣  𝑣 )  =  𝑣 ) | 
						
							| 39 | 33 34 38 | 3eqtrd | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  𝑣 ) | 
						
							| 40 | 24 | ad2antrr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ¬  𝑣  =  0 ) | 
						
							| 42 | 18 | ad2antrr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( 𝑣  ⨣  𝑤 )  =  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 ) ) | 
						
							| 43 | 26 | ad2antlr | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 )  =  𝑣 ) | 
						
							| 44 | 42 43 | eqtrd | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( 𝑣  ⨣  𝑤 )  =  𝑣 ) | 
						
							| 45 | 44 | eqeq1d | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( ( 𝑣  ⨣  𝑤 )  =  0  ↔  𝑣  =  0 ) ) | 
						
							| 46 | 41 45 | mtbird | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ¬  ( 𝑣  ⨣  𝑤 )  =  0 ) | 
						
							| 47 | 46 | iffalsed | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) )  =  ( 𝑣  ⨣  𝑤 ) ) | 
						
							| 48 | 40 47 44 | 3eqtrd | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  𝑣 ) | 
						
							| 49 | 39 48 | eqtr4d | ⊢ ( ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  ∧  ¬  𝑣  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 50 | 32 49 | pm2.61dan | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 51 |  | iffalse | ⊢ ( ¬  𝑤  =  0  →  if ( 𝑤  =  0 ,  ( 𝑢  ⨣  𝑣 ) ,  𝑤 )  =  𝑤 ) | 
						
							| 52 | 7 51 | sylan9eq | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  𝑤 ) | 
						
							| 53 | 24 | adantr | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ¬  𝑤  =  0 ) | 
						
							| 55 |  | iffalse | ⊢ ( ¬  𝑤  =  0  →  if ( 𝑤  =  0 ,  𝑣 ,  𝑤 )  =  𝑤 ) | 
						
							| 56 | 18 55 | sylan9eq | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ( 𝑣  ⨣  𝑤 )  =  𝑤 ) | 
						
							| 57 | 56 | eqeq1d | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ( ( 𝑣  ⨣  𝑤 )  =  0  ↔  𝑤  =  0 ) ) | 
						
							| 58 | 54 57 | mtbird | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ¬  ( 𝑣  ⨣  𝑤 )  =  0 ) | 
						
							| 59 | 58 | iffalsed | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  if ( ( 𝑣  ⨣  𝑤 )  =  0 ,  𝑢 ,  ( 𝑣  ⨣  𝑤 ) )  =  ( 𝑣  ⨣  𝑤 ) ) | 
						
							| 60 | 53 59 56 | 3eqtrd | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) )  =  𝑤 ) | 
						
							| 61 | 52 60 | eqtr4d | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  ∧  ¬  𝑤  =  0 )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 62 | 50 61 | pm2.61dan | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 }  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 63 | 62 | 3expa | ⊢ ( ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑤  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 64 | 63 | ralrimiva | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 } )  →  ∀ 𝑤  ∈  { - 1 ,  0 ,  1 } ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 65 | 5 64 | jca | ⊢ ( ( 𝑢  ∈  { - 1 ,  0 ,  1 }  ∧  𝑣  ∈  { - 1 ,  0 ,  1 } )  →  ( ( 𝑢  ⨣  𝑣 )  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑤  ∈  { - 1 ,  0 ,  1 } ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) ) | 
						
							| 66 | 65 | rgen2 | ⊢ ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ∀ 𝑣  ∈  { - 1 ,  0 ,  1 } ( ( 𝑢  ⨣  𝑣 )  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑤  ∈  { - 1 ,  0 ,  1 } ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) ) | 
						
							| 67 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 68 | 67 | tpid2 | ⊢ 0  ∈  { - 1 ,  0 ,  1 } | 
						
							| 69 | 1 | signsw0glem | ⊢ ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) | 
						
							| 70 |  | oveq1 | ⊢ ( 𝑒  =  0  →  ( 𝑒  ⨣  𝑢 )  =  ( 0  ⨣  𝑢 ) ) | 
						
							| 71 | 70 | eqeq1d | ⊢ ( 𝑒  =  0  →  ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ↔  ( 0  ⨣  𝑢 )  =  𝑢 ) ) | 
						
							| 72 | 71 | ovanraleqv | ⊢ ( 𝑒  =  0  →  ( ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 )  ↔  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) ) ) | 
						
							| 73 | 72 | rspcev | ⊢ ( ( 0  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 0  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  0 )  =  𝑢 ) )  →  ∃ 𝑒  ∈  { - 1 ,  0 ,  1 } ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 ) ) | 
						
							| 74 | 68 69 73 | mp2an | ⊢ ∃ 𝑒  ∈  { - 1 ,  0 ,  1 } ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 ) | 
						
							| 75 | 1 2 | signswbase | ⊢ { - 1 ,  0 ,  1 }  =  ( Base ‘ 𝑊 ) | 
						
							| 76 | 1 2 | signswplusg | ⊢  ⨣   =  ( +g ‘ 𝑊 ) | 
						
							| 77 | 75 76 | ismnd | ⊢ ( 𝑊  ∈  Mnd  ↔  ( ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ∀ 𝑣  ∈  { - 1 ,  0 ,  1 } ( ( 𝑢  ⨣  𝑣 )  ∈  { - 1 ,  0 ,  1 }  ∧  ∀ 𝑤  ∈  { - 1 ,  0 ,  1 } ( ( 𝑢  ⨣  𝑣 )  ⨣  𝑤 )  =  ( 𝑢  ⨣  ( 𝑣  ⨣  𝑤 ) ) )  ∧  ∃ 𝑒  ∈  { - 1 ,  0 ,  1 } ∀ 𝑢  ∈  { - 1 ,  0 ,  1 } ( ( 𝑒  ⨣  𝑢 )  =  𝑢  ∧  ( 𝑢  ⨣  𝑒 )  =  𝑢 ) ) ) | 
						
							| 78 | 66 74 77 | mpbir2an | ⊢ 𝑊  ∈  Mnd |