Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsw.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
1
|
signspval |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
4 |
|
ifcl |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ∈ { - 1 , 0 , 1 } ) |
5 |
3 4
|
eqeltrd |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ) |
6 |
1
|
signspval |
⊢ ( ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) ) |
7 |
5 6
|
stoic3 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) ) |
8 |
|
iftrue |
⊢ ( 𝑤 = 0 → if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
9 |
7 8
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
11 |
3
|
3adant3 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
13 |
|
iftrue |
⊢ ( 𝑣 = 0 → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑢 ) |
14 |
13
|
adantl |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑢 ) |
15 |
10 12 14
|
3eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = 𝑢 ) |
16 |
|
simp1 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → 𝑢 ∈ { - 1 , 0 , 1 } ) |
17 |
1
|
signspval |
⊢ ( ( 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑣 ⨣ 𝑤 ) = if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ) |
18 |
17
|
3adant1 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑣 ⨣ 𝑤 ) = if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ) |
19 |
|
simpl2 |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → 𝑣 ∈ { - 1 , 0 , 1 } ) |
20 |
|
simpl3 |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ { - 1 , 0 , 1 } ) |
21 |
19 20
|
ifclda |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ∈ { - 1 , 0 , 1 } ) |
22 |
18 21
|
eqeltrd |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑣 ⨣ 𝑤 ) ∈ { - 1 , 0 , 1 } ) |
23 |
1
|
signspval |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ ( 𝑣 ⨣ 𝑤 ) ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
24 |
16 22 23
|
syl2anc |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
26 |
|
iftrue |
⊢ ( 𝑤 = 0 → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) = 𝑣 ) |
27 |
18 26
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 𝑣 ) |
28 |
|
id |
⊢ ( 𝑣 = 0 → 𝑣 = 0 ) |
29 |
27 28
|
sylan9eq |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 0 ) |
30 |
29
|
iftrued |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) = 𝑢 ) |
31 |
25 30
|
eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = 𝑢 ) |
32 |
15 31
|
eqtr4d |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
33 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) ) |
34 |
8
|
ad2antlr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
35 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
36 |
|
iffalse |
⊢ ( ¬ 𝑣 = 0 → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑣 ) |
37 |
36
|
adantl |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑣 ) |
38 |
35 37
|
eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ 𝑣 ) = 𝑣 ) |
39 |
33 34 38
|
3eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = 𝑣 ) |
40 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ¬ 𝑣 = 0 ) |
42 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ) |
43 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) = 𝑣 ) |
44 |
42 43
|
eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 𝑣 ) |
45 |
44
|
eqeq1d |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑣 ⨣ 𝑤 ) = 0 ↔ 𝑣 = 0 ) ) |
46 |
41 45
|
mtbird |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ¬ ( 𝑣 ⨣ 𝑤 ) = 0 ) |
47 |
46
|
iffalsed |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) = ( 𝑣 ⨣ 𝑤 ) ) |
48 |
40 47 44
|
3eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = 𝑣 ) |
49 |
39 48
|
eqtr4d |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
50 |
32 49
|
pm2.61dan |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
51 |
|
iffalse |
⊢ ( ¬ 𝑤 = 0 → if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) = 𝑤 ) |
52 |
7 51
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = 𝑤 ) |
53 |
24
|
adantr |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
54 |
|
simpr |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ¬ 𝑤 = 0 ) |
55 |
|
iffalse |
⊢ ( ¬ 𝑤 = 0 → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) = 𝑤 ) |
56 |
18 55
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 𝑤 ) |
57 |
56
|
eqeq1d |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( ( 𝑣 ⨣ 𝑤 ) = 0 ↔ 𝑤 = 0 ) ) |
58 |
54 57
|
mtbird |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ¬ ( 𝑣 ⨣ 𝑤 ) = 0 ) |
59 |
58
|
iffalsed |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) = ( 𝑣 ⨣ 𝑤 ) ) |
60 |
53 59 56
|
3eqtrd |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = 𝑤 ) |
61 |
52 60
|
eqtr4d |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
62 |
50 61
|
pm2.61dan |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
63 |
62
|
3expa |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
64 |
63
|
ralrimiva |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
65 |
5 64
|
jca |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) ) |
66 |
65
|
rgen2 |
⊢ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ∀ 𝑣 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
67 |
|
c0ex |
⊢ 0 ∈ V |
68 |
67
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
69 |
1
|
signsw0glem |
⊢ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) |
70 |
|
oveq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 ⨣ 𝑢 ) = ( 0 ⨣ 𝑢 ) ) |
71 |
70
|
eqeq1d |
⊢ ( 𝑒 = 0 → ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ↔ ( 0 ⨣ 𝑢 ) = 𝑢 ) ) |
72 |
71
|
ovanraleqv |
⊢ ( 𝑒 = 0 → ( ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ↔ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) ) |
73 |
72
|
rspcev |
⊢ ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) → ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ) |
74 |
68 69 73
|
mp2an |
⊢ ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) |
75 |
1 2
|
signswbase |
⊢ { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) |
76 |
1 2
|
signswplusg |
⊢ ⨣ = ( +g ‘ 𝑊 ) |
77 |
75 76
|
ismnd |
⊢ ( 𝑊 ∈ Mnd ↔ ( ∀ 𝑢 ∈ { - 1 , 0 , 1 } ∀ 𝑣 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) ∧ ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ) ) |
78 |
66 74 77
|
mpbir2an |
⊢ 𝑊 ∈ Mnd |