| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
| 2 |
|
signsw.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
| 3 |
1
|
signspval |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
| 4 |
|
ifcl |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ∈ { - 1 , 0 , 1 } ) |
| 5 |
3 4
|
eqeltrd |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ) |
| 6 |
1
|
signspval |
⊢ ( ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) ) |
| 7 |
5 6
|
stoic3 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) ) |
| 8 |
|
iftrue |
⊢ ( 𝑤 = 0 → if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
| 9 |
7 8
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
| 11 |
3
|
3adant3 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
| 13 |
|
iftrue |
⊢ ( 𝑣 = 0 → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑢 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑢 ) |
| 15 |
10 12 14
|
3eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = 𝑢 ) |
| 16 |
|
simp1 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → 𝑢 ∈ { - 1 , 0 , 1 } ) |
| 17 |
1
|
signspval |
⊢ ( ( 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑣 ⨣ 𝑤 ) = if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ) |
| 18 |
17
|
3adant1 |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑣 ⨣ 𝑤 ) = if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ) |
| 19 |
|
simpl2 |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → 𝑣 ∈ { - 1 , 0 , 1 } ) |
| 20 |
|
simpl3 |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ { - 1 , 0 , 1 } ) |
| 21 |
19 20
|
ifclda |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ∈ { - 1 , 0 , 1 } ) |
| 22 |
18 21
|
eqeltrd |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑣 ⨣ 𝑤 ) ∈ { - 1 , 0 , 1 } ) |
| 23 |
1
|
signspval |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ ( 𝑣 ⨣ 𝑤 ) ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
| 24 |
16 22 23
|
syl2anc |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
| 26 |
|
iftrue |
⊢ ( 𝑤 = 0 → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) = 𝑣 ) |
| 27 |
18 26
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 𝑣 ) |
| 28 |
|
id |
⊢ ( 𝑣 = 0 → 𝑣 = 0 ) |
| 29 |
27 28
|
sylan9eq |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 0 ) |
| 30 |
29
|
iftrued |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) = 𝑢 ) |
| 31 |
25 30
|
eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = 𝑢 ) |
| 32 |
15 31
|
eqtr4d |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 33 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) ) |
| 34 |
8
|
ad2antlr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) = ( 𝑢 ⨣ 𝑣 ) ) |
| 35 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ 𝑣 ) = if ( 𝑣 = 0 , 𝑢 , 𝑣 ) ) |
| 36 |
|
iffalse |
⊢ ( ¬ 𝑣 = 0 → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑣 ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( 𝑣 = 0 , 𝑢 , 𝑣 ) = 𝑣 ) |
| 38 |
35 37
|
eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ 𝑣 ) = 𝑣 ) |
| 39 |
33 34 38
|
3eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = 𝑣 ) |
| 40 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ¬ 𝑣 = 0 ) |
| 42 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = if ( 𝑤 = 0 , 𝑣 , 𝑤 ) ) |
| 43 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) = 𝑣 ) |
| 44 |
42 43
|
eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 𝑣 ) |
| 45 |
44
|
eqeq1d |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑣 ⨣ 𝑤 ) = 0 ↔ 𝑣 = 0 ) ) |
| 46 |
41 45
|
mtbird |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ¬ ( 𝑣 ⨣ 𝑤 ) = 0 ) |
| 47 |
46
|
iffalsed |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) = ( 𝑣 ⨣ 𝑤 ) ) |
| 48 |
40 47 44
|
3eqtrd |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = 𝑣 ) |
| 49 |
39 48
|
eqtr4d |
⊢ ( ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) ∧ ¬ 𝑣 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 50 |
32 49
|
pm2.61dan |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 51 |
|
iffalse |
⊢ ( ¬ 𝑤 = 0 → if ( 𝑤 = 0 , ( 𝑢 ⨣ 𝑣 ) , 𝑤 ) = 𝑤 ) |
| 52 |
7 51
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = 𝑤 ) |
| 53 |
24
|
adantr |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ¬ 𝑤 = 0 ) |
| 55 |
|
iffalse |
⊢ ( ¬ 𝑤 = 0 → if ( 𝑤 = 0 , 𝑣 , 𝑤 ) = 𝑤 ) |
| 56 |
18 55
|
sylan9eq |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( 𝑣 ⨣ 𝑤 ) = 𝑤 ) |
| 57 |
56
|
eqeq1d |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( ( 𝑣 ⨣ 𝑤 ) = 0 ↔ 𝑤 = 0 ) ) |
| 58 |
54 57
|
mtbird |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ¬ ( 𝑣 ⨣ 𝑤 ) = 0 ) |
| 59 |
58
|
iffalsed |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → if ( ( 𝑣 ⨣ 𝑤 ) = 0 , 𝑢 , ( 𝑣 ⨣ 𝑤 ) ) = ( 𝑣 ⨣ 𝑤 ) ) |
| 60 |
53 59 56
|
3eqtrd |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) = 𝑤 ) |
| 61 |
52 60
|
eqtr4d |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) ∧ ¬ 𝑤 = 0 ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 62 |
50 61
|
pm2.61dan |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 63 |
62
|
3expa |
⊢ ( ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) ∧ 𝑤 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 65 |
5 64
|
jca |
⊢ ( ( 𝑢 ∈ { - 1 , 0 , 1 } ∧ 𝑣 ∈ { - 1 , 0 , 1 } ) → ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) ) |
| 66 |
65
|
rgen2 |
⊢ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ∀ 𝑣 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) |
| 67 |
|
c0ex |
⊢ 0 ∈ V |
| 68 |
67
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
| 69 |
1
|
signsw0glem |
⊢ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) |
| 70 |
|
oveq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 ⨣ 𝑢 ) = ( 0 ⨣ 𝑢 ) ) |
| 71 |
70
|
eqeq1d |
⊢ ( 𝑒 = 0 → ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ↔ ( 0 ⨣ 𝑢 ) = 𝑢 ) ) |
| 72 |
71
|
ovanraleqv |
⊢ ( 𝑒 = 0 → ( ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ↔ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) ) |
| 73 |
72
|
rspcev |
⊢ ( ( 0 ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 0 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 0 ) = 𝑢 ) ) → ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ) |
| 74 |
68 69 73
|
mp2an |
⊢ ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) |
| 75 |
1 2
|
signswbase |
⊢ { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) |
| 76 |
1 2
|
signswplusg |
⊢ ⨣ = ( +g ‘ 𝑊 ) |
| 77 |
75 76
|
ismnd |
⊢ ( 𝑊 ∈ Mnd ↔ ( ∀ 𝑢 ∈ { - 1 , 0 , 1 } ∀ 𝑣 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ∈ { - 1 , 0 , 1 } ∧ ∀ 𝑤 ∈ { - 1 , 0 , 1 } ( ( 𝑢 ⨣ 𝑣 ) ⨣ 𝑤 ) = ( 𝑢 ⨣ ( 𝑣 ⨣ 𝑤 ) ) ) ∧ ∃ 𝑒 ∈ { - 1 , 0 , 1 } ∀ 𝑢 ∈ { - 1 , 0 , 1 } ( ( 𝑒 ⨣ 𝑢 ) = 𝑢 ∧ ( 𝑢 ⨣ 𝑒 ) = 𝑢 ) ) ) |
| 78 |
66 74 77
|
mpbir2an |
⊢ 𝑊 ∈ Mnd |