Metamath Proof Explorer


Theorem signswrid

Description: The zero-skipping operation propagages nonzeros. (Contributed by Thierry Arnoux, 11-Oct-2018)

Ref Expression
Hypotheses signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
Assertion signswrid ( 𝑋 ∈ { - 1 , 0 , 1 } → ( 𝑋 0 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 c0ex 0 ∈ V
4 3 tpid2 0 ∈ { - 1 , 0 , 1 }
5 1 signspval ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 0 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 0 ) = if ( 0 = 0 , 𝑋 , 0 ) )
6 4 5 mpan2 ( 𝑋 ∈ { - 1 , 0 , 1 } → ( 𝑋 0 ) = if ( 0 = 0 , 𝑋 , 0 ) )
7 eqid 0 = 0
8 iftrue ( 0 = 0 → if ( 0 = 0 , 𝑋 , 0 ) = 𝑋 )
9 7 8 mp1i ( 𝑋 ∈ { - 1 , 0 , 1 } → if ( 0 = 0 , 𝑋 , 0 ) = 𝑋 )
10 6 9 eqtrd ( 𝑋 ∈ { - 1 , 0 , 1 } → ( 𝑋 0 ) = 𝑋 )