Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsw.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
c0ex |
⊢ 0 ∈ V |
4 |
3
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
5 |
1
|
signspval |
⊢ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 0 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 ⨣ 0 ) = if ( 0 = 0 , 𝑋 , 0 ) ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝑋 ∈ { - 1 , 0 , 1 } → ( 𝑋 ⨣ 0 ) = if ( 0 = 0 , 𝑋 , 0 ) ) |
7 |
|
eqid |
⊢ 0 = 0 |
8 |
|
iftrue |
⊢ ( 0 = 0 → if ( 0 = 0 , 𝑋 , 0 ) = 𝑋 ) |
9 |
7 8
|
mp1i |
⊢ ( 𝑋 ∈ { - 1 , 0 , 1 } → if ( 0 = 0 , 𝑋 , 0 ) = 𝑋 ) |
10 |
6 9
|
eqtrd |
⊢ ( 𝑋 ∈ { - 1 , 0 , 1 } → ( 𝑋 ⨣ 0 ) = 𝑋 ) |