| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsw.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 4 | 3 | tpid2 | ⊢ 0  ∈  { - 1 ,  0 ,  1 } | 
						
							| 5 | 1 | signspval | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  0  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  0 )  =  if ( 0  =  0 ,  𝑋 ,  0 ) ) | 
						
							| 6 | 4 5 | mpan2 | ⊢ ( 𝑋  ∈  { - 1 ,  0 ,  1 }  →  ( 𝑋  ⨣  0 )  =  if ( 0  =  0 ,  𝑋 ,  0 ) ) | 
						
							| 7 |  | eqid | ⊢ 0  =  0 | 
						
							| 8 |  | iftrue | ⊢ ( 0  =  0  →  if ( 0  =  0 ,  𝑋 ,  0 )  =  𝑋 ) | 
						
							| 9 | 7 8 | mp1i | ⊢ ( 𝑋  ∈  { - 1 ,  0 ,  1 }  →  if ( 0  =  0 ,  𝑋 ,  0 )  =  𝑋 ) | 
						
							| 10 | 6 9 | eqtrd | ⊢ ( 𝑋  ∈  { - 1 ,  0 ,  1 }  →  ( 𝑋  ⨣  0 )  =  𝑋 ) |