| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
| 2 |
|
signsw.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
| 3 |
1
|
signspval |
⊢ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 ⨣ 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 ⨣ 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → 𝑌 ≠ 0 ) |
| 6 |
5
|
neneqd |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ¬ 𝑌 = 0 ) |
| 7 |
6
|
iffalsed |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) = 𝑌 ) |
| 8 |
4 7
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 ⨣ 𝑌 ) = 𝑌 ) |