Metamath Proof Explorer


Theorem signswlid

Description: The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
Assertion signswlid ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 𝑌 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 1 signspval ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
4 3 adantr ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
5 simpr ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → 𝑌 ≠ 0 )
6 5 neneqd ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ¬ 𝑌 = 0 )
7 6 iffalsed ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) = 𝑌 )
8 4 7 eqtrd ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 𝑌 ) = 𝑌 )