Metamath Proof Explorer


Theorem signswlid

Description: The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsw.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsw.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
Assertion signswlid ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 âĻĢ ð‘Œ ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 signsw.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsw.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
3 1 signspval âŠĒ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 âĻĢ ð‘Œ ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
4 3 adantr âŠĒ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 âĻĢ ð‘Œ ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
5 simpr âŠĒ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → 𝑌 ≠ 0 )
6 5 neneqd âŠĒ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ÂŽ 𝑌 = 0 )
7 6 iffalsed âŠĒ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) = 𝑌 )
8 4 7 eqtrd âŠĒ ( ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) ∧ 𝑌 ≠ 0 ) → ( 𝑋 âĻĢ ð‘Œ ) = 𝑌 )