Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
âĒ âĻĢ = ( ð â { - 1 , 0 , 1 } , ð â { - 1 , 0 , 1 } âĶ if ( ð = 0 , ð , ð ) ) |
2 |
|
signsw.w |
âĒ ð = { âĻ ( Base â ndx ) , { - 1 , 0 , 1 } âĐ , âĻ ( +g â ndx ) , âĻĢ âĐ } |
3 |
1
|
signspval |
âĒ ( ( ð â { - 1 , 0 , 1 } â§ ð â { - 1 , 0 , 1 } ) â ( ð âĻĢ ð ) = if ( ð = 0 , ð , ð ) ) |
4 |
3
|
adantr |
âĒ ( ( ( ð â { - 1 , 0 , 1 } â§ ð â { - 1 , 0 , 1 } ) â§ ð â 0 ) â ( ð âĻĢ ð ) = if ( ð = 0 , ð , ð ) ) |
5 |
|
simpr |
âĒ ( ( ( ð â { - 1 , 0 , 1 } â§ ð â { - 1 , 0 , 1 } ) â§ ð â 0 ) â ð â 0 ) |
6 |
5
|
neneqd |
âĒ ( ( ( ð â { - 1 , 0 , 1 } â§ ð â { - 1 , 0 , 1 } ) â§ ð â 0 ) â ÂŽ ð = 0 ) |
7 |
6
|
iffalsed |
âĒ ( ( ( ð â { - 1 , 0 , 1 } â§ ð â { - 1 , 0 , 1 } ) â§ ð â 0 ) â if ( ð = 0 , ð , ð ) = ð ) |
8 |
4 7
|
eqtrd |
âĒ ( ( ( ð â { - 1 , 0 , 1 } â§ ð â { - 1 , 0 , 1 } ) â§ ð â 0 ) â ( ð âĻĢ ð ) = ð ) |