| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsw.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 | 1 | signspval | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  ≠  0 )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  ≠  0 )  →  𝑌  ≠  0 ) | 
						
							| 6 | 5 | neneqd | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  ≠  0 )  →  ¬  𝑌  =  0 ) | 
						
							| 7 | 6 | iffalsed | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  ≠  0 )  →  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  =  𝑌 ) | 
						
							| 8 | 4 7 | eqtrd | ⊢ ( ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  ∧  𝑌  ≠  0 )  →  ( 𝑋  ⨣  𝑌 )  =  𝑌 ) |