Metamath Proof Explorer


Theorem signswlid

Description: The zero-skipping operation keeps nonzeros. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsw.p ˙=a101,b101ifb=0ab
signsw.w W=Basendx101+ndx˙
Assertion signswlid X101Y101Y0X˙Y=Y

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 signsw.w W=Basendx101+ndx˙
3 1 signspval X101Y101X˙Y=ifY=0XY
4 3 adantr X101Y101Y0X˙Y=ifY=0XY
5 simpr X101Y101Y0Y0
6 5 neneqd X101Y101Y0¬Y=0
7 6 iffalsed X101Y101Y0ifY=0XY=Y
8 4 7 eqtrd X101Y101Y0X˙Y=Y