| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsw.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 | 1 | signspval |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> Y =/= 0 ) | 
						
							| 6 | 5 | neneqd |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> -. Y = 0 ) | 
						
							| 7 | 6 | iffalsed |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> if ( Y = 0 , X , Y ) = Y ) | 
						
							| 8 | 4 7 | eqtrd |  |-  ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> ( X .+^ Y ) = Y ) |