| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsw.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
| 2 |
|
signsw.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
| 3 |
1
|
signspval |
|- ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
| 4 |
3
|
adantr |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
| 5 |
|
simpr |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> Y =/= 0 ) |
| 6 |
5
|
neneqd |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> -. Y = 0 ) |
| 7 |
6
|
iffalsed |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> if ( Y = 0 , X , Y ) = Y ) |
| 8 |
4 7
|
eqtrd |
|- ( ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) /\ Y =/= 0 ) -> ( X .+^ Y ) = Y ) |