| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | ifcl |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> if ( Y = 0 , X , Y ) e. { -u 1 , 0 , 1 } ) | 
						
							| 3 |  | ifeq1 |  |-  ( a = X -> if ( b = 0 , a , b ) = if ( b = 0 , X , b ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( b = Y -> ( b = 0 <-> Y = 0 ) ) | 
						
							| 5 |  | id |  |-  ( b = Y -> b = Y ) | 
						
							| 6 | 4 5 | ifbieq2d |  |-  ( b = Y -> if ( b = 0 , X , b ) = if ( Y = 0 , X , Y ) ) | 
						
							| 7 | 3 6 1 | ovmpog |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } /\ if ( Y = 0 , X , Y ) e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) | 
						
							| 8 | 2 7 | mpd3an3 |  |-  ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |