Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
ifcl |
|- ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> if ( Y = 0 , X , Y ) e. { -u 1 , 0 , 1 } ) |
3 |
|
ifeq1 |
|- ( a = X -> if ( b = 0 , a , b ) = if ( b = 0 , X , b ) ) |
4 |
|
eqeq1 |
|- ( b = Y -> ( b = 0 <-> Y = 0 ) ) |
5 |
|
id |
|- ( b = Y -> b = Y ) |
6 |
4 5
|
ifbieq2d |
|- ( b = Y -> if ( b = 0 , X , b ) = if ( Y = 0 , X , Y ) ) |
7 |
3 6 1
|
ovmpog |
|- ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } /\ if ( Y = 0 , X , Y ) e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |
8 |
2 7
|
mpd3an3 |
|- ( ( X e. { -u 1 , 0 , 1 } /\ Y e. { -u 1 , 0 , 1 } ) -> ( X .+^ Y ) = if ( Y = 0 , X , Y ) ) |