Metamath Proof Explorer


Theorem signspval

Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p ˙=a101,b101ifb=0ab
Assertion signspval X101Y101X˙Y=ifY=0XY

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 ifcl X101Y101ifY=0XY101
3 ifeq1 a=Xifb=0ab=ifb=0Xb
4 eqeq1 b=Yb=0Y=0
5 id b=Yb=Y
6 4 5 ifbieq2d b=Yifb=0Xb=ifY=0XY
7 3 6 1 ovmpog X101Y101ifY=0XY101X˙Y=ifY=0XY
8 2 7 mpd3an3 X101Y101X˙Y=ifY=0XY