Metamath Proof Explorer


Theorem signspval

Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
Assertion signspval X 1 0 1 Y 1 0 1 X ˙ Y = if Y = 0 X Y

Proof

Step Hyp Ref Expression
1 signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 ifcl X 1 0 1 Y 1 0 1 if Y = 0 X Y 1 0 1
3 ifeq1 a = X if b = 0 a b = if b = 0 X b
4 eqeq1 b = Y b = 0 Y = 0
5 id b = Y b = Y
6 4 5 ifbieq2d b = Y if b = 0 X b = if Y = 0 X Y
7 3 6 1 ovmpog X 1 0 1 Y 1 0 1 if Y = 0 X Y 1 0 1 X ˙ Y = if Y = 0 X Y
8 2 7 mpd3an3 X 1 0 1 Y 1 0 1 X ˙ Y = if Y = 0 X Y