Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Descartes's rule of signs
Sign changes in a word over real numbers
signspval
Next ⟩
signsw0glem
Metamath Proof Explorer
Ascii
Unicode
Theorem
signspval
Description:
The value of the skipping 0 sign operation.
(Contributed by
Thierry Arnoux
, 9-Sep-2018)
Ref
Expression
Hypothesis
signsw.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
Assertion
signspval
⊢
X
∈
−
1
0
1
∧
Y
∈
−
1
0
1
→
X
⨣
˙
Y
=
if
Y
=
0
X
Y
Proof
Step
Hyp
Ref
Expression
1
signsw.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
2
ifcl
⊢
X
∈
−
1
0
1
∧
Y
∈
−
1
0
1
→
if
Y
=
0
X
Y
∈
−
1
0
1
3
ifeq1
⊢
a
=
X
→
if
b
=
0
a
b
=
if
b
=
0
X
b
4
eqeq1
⊢
b
=
Y
→
b
=
0
↔
Y
=
0
5
id
⊢
b
=
Y
→
b
=
Y
6
4
5
ifbieq2d
⊢
b
=
Y
→
if
b
=
0
X
b
=
if
Y
=
0
X
Y
7
3
6
1
ovmpog
⊢
X
∈
−
1
0
1
∧
Y
∈
−
1
0
1
∧
if
Y
=
0
X
Y
∈
−
1
0
1
→
X
⨣
˙
Y
=
if
Y
=
0
X
Y
8
2
7
mpd3an3
⊢
X
∈
−
1
0
1
∧
Y
∈
−
1
0
1
→
X
⨣
˙
Y
=
if
Y
=
0
X
Y