Metamath Proof Explorer


Theorem signspval

Description: The value of the skipping 0 sign operation. (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypothesis signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
Assertion signspval ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )

Proof

Step Hyp Ref Expression
1 signsw.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 ifcl ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ∈ { - 1 , 0 , 1 } )
3 ifeq1 ( 𝑎 = 𝑋 → if ( 𝑏 = 0 , 𝑎 , 𝑏 ) = if ( 𝑏 = 0 , 𝑋 , 𝑏 ) )
4 eqeq1 ( 𝑏 = 𝑌 → ( 𝑏 = 0 ↔ 𝑌 = 0 ) )
5 id ( 𝑏 = 𝑌𝑏 = 𝑌 )
6 4 5 ifbieq2d ( 𝑏 = 𝑌 → if ( 𝑏 = 0 , 𝑋 , 𝑏 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
7 3 6 1 ovmpog ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ∧ if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ∈ { - 1 , 0 , 1 } ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )
8 2 7 mpd3an3 ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) )