Step |
Hyp |
Ref |
Expression |
1 |
|
signsw.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
ifcl |
⊢ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ∈ { - 1 , 0 , 1 } ) |
3 |
|
ifeq1 |
⊢ ( 𝑎 = 𝑋 → if ( 𝑏 = 0 , 𝑎 , 𝑏 ) = if ( 𝑏 = 0 , 𝑋 , 𝑏 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 = 0 ↔ 𝑌 = 0 ) ) |
5 |
|
id |
⊢ ( 𝑏 = 𝑌 → 𝑏 = 𝑌 ) |
6 |
4 5
|
ifbieq2d |
⊢ ( 𝑏 = 𝑌 → if ( 𝑏 = 0 , 𝑋 , 𝑏 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |
7 |
3 6 1
|
ovmpog |
⊢ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ∧ if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ∈ { - 1 , 0 , 1 } ) → ( 𝑋 ⨣ 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |
8 |
2 7
|
mpd3an3 |
⊢ ( ( 𝑋 ∈ { - 1 , 0 , 1 } ∧ 𝑌 ∈ { - 1 , 0 , 1 } ) → ( 𝑋 ⨣ 𝑌 ) = if ( 𝑌 = 0 , 𝑋 , 𝑌 ) ) |