| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsw.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | ifcl | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 3 |  | ifeq1 | ⊢ ( 𝑎  =  𝑋  →  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 )  =  if ( 𝑏  =  0 ,  𝑋 ,  𝑏 ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑏  =  𝑌  →  ( 𝑏  =  0  ↔  𝑌  =  0 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑏  =  𝑌  →  𝑏  =  𝑌 ) | 
						
							| 6 | 4 5 | ifbieq2d | ⊢ ( 𝑏  =  𝑌  →  if ( 𝑏  =  0 ,  𝑋 ,  𝑏 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 7 | 3 6 1 | ovmpog | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 }  ∧  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 )  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) | 
						
							| 8 | 2 7 | mpd3an3 | ⊢ ( ( 𝑋  ∈  { - 1 ,  0 ,  1 }  ∧  𝑌  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑋  ⨣  𝑌 )  =  if ( 𝑌  =  0 ,  𝑋 ,  𝑌 ) ) |